Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren

Aus ZUM Projektwiki

SEITE IM AUFBAU

8 Modellieren - Anwendungsaufgaben

In unserer Umgebung gibt es viele Beispiele für Parabeln. Besonders häufig sind sie z.B. beim Brückenbau und bei Wurf- bzw. Flugbahnen zu sehen.
Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:

  • Scheitelpunkt
  • Nullstellen
  • Schnittpunkt mit der y-Achse
  • Koordinaten eines beliebigen Punktes


Fragen zu eigenen Parabeln stellen
Du hast während der Klassenfahrt Fotos von Parabeln gemacht. Zeichne in das Foto ein Koordinatenkreuz und stelle Fragen an dieses Bild, so dass der Scheitelpunkt, die Nullstellen, der Schnittpunkt mit der y-Achse oder ein beliebiger Punkt diese Frage beantworten.

Beispiel 1:
Golden-Gate-Bridge.svg

(Autor:Roulex 45; https://de.wikipedia.org/wiki/Golden_Gate_Bridge#/media/Datei:Golden-Gate-Bridge.svg)

Mögliche Fragen sind:

  • Wie hoch verläuft die Fahrbahn über dem Meeresspielgel? (Scheitelpunkt, y-Koordinate)
  • Wie lang sind die Hängeseile? (Koordinaten bestimmter Punkte auf der Parabel)

Beispiel 2:
Weitsprung mit Koordinatenachsen.png

Mögliche Fragen sind:

  • Wie weit springt die Person? (2. Nullstelle)
  • Wann hat sie die größte Sprunghöhe erreicht? (x-Koordinate des Scheitelpunktes)
  • Wie hoch ist die größte Höhe des Körperschwerpunktes? (y-Koordinate des Scheitelpunktes)
  • Wie hoch liegt der Körperschwerpunkt beim Absprung über dem Boden? (Schnittpunkt mit der y-Achse)


Übung 1: Modellieren mit quadratischen Funktionen
Löse die Aufgaben aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
  • S. 24 Nr. 1
  • S. 24 Nr. 2
  • S. 24 Nr. 3


Übung 2 - online

Schau die Aufgaben zum Basketball auf der Seite realmath.de an und vollziehe die Lösungsschritte nach.


Übung 3

Löse die Aufgaben aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.

  • S. 25 Nr. 5
  • S. 25 Nr. 6
  • S. 25 Nr. 7
  • S. 25 Nr. 8
  • S. 25 Nr. 9