Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Änderungsrate zum Änderungseffekt

Aus ZUM Projektwiki
Info

Als Einstieg in das Kapitel findest du eine Herleitung des Integrals aus dem Kontext der Differentialrechnung. Dabei werden dir die zwei Oberbegriffe des Kapitels Änderungsrate und Änderungseffekt erläutert. Anschließend folgen einige Aufgaben zum Integral. Die Aufgaben werden in drei unterschiedliche Schwierigkeitsstufen eingeteilt so dass du jederzeit die Möglichkeit hast auf deinem Leistungsstand zu arbeiten.

In Aufgaben, die orange gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.

Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit. Und Aufgaben mit grüner Hinterlegung sind Knobelaufgaben.

Herleitung des Integrals

Konstante und lineare Funktionen

Beispiel 1: Jogger

Wir nehmen an, dass ein Jogger im Durchschnitt 3m/s läuft. Dadurch ergibt sich die konstante Funktion , wie in der unteren Abbildung dargestellt. Nun kann man sich die Frage stellen: Wie viel Meter hat er in einer bestimmten Zeit zurückgelegt? Um das herauszufinden, muss lediglich der Flächeninhalt des Rechtecks zwischen dem Graphen f(x) und der x-Achse in einem festgelegten Zeitintervall berechnet werden. Beispielsweise hätte der Jogger innerhalb der ersten 10s eine Strecke von 30m () zurückgelegt. Das lässt sich für beliebig große Intervalle auf der x-Achse fortführen.

Probiere das in der Darstellung aus indem du die Grenze b verschiebst. Vergleiche den Wert der Stammfunktion F(x) mit dem Wert des Flächeninhalts. Was fällt dir auf?


GeoGebra



Beispiel 2: Durchflussrate


Merke: Orientierter Flächeninhalt

Allgemeine Herleitung und Definition

Idee für ganzrationale Funktionen


Bei konstanten oder linearen Funktionen schafft man es den Änderungseffekt durch Rechtecks- und Dreicksflächen zu ermitteln. Doch wie funktioniert das bei Funktionen zweiten Grades oder höher? Um den Effekt bei Funktionen zweiten Grades oder höher zu ermitteln nutzt man dasselbe Verfahren. Man versucht sich der Fläche zwischen dem Graphen und der x-Achse mit Rechtecksflächen anzunähern. Aktiviere dazu in der unteren Abbildung die Untersumme. Für einen direkten Vergleich kannst du auch das Integral aktivieren.

Hinweise:

  • N markiert die Anzahl der Rechtecke unter dem Graphen.
  • Das Δx gibt die Breite der Rechtecke an. Je mehr Rechtecke unterhalb des Graphen desto kleiner wird ihre Breite und damit auch das Δx.
  • Die eingeblendete Untersumme gibt den aktuellen Flächeninhalt der Summe aller Rechtecksflächen an.


GeoGebra



Definition: Integral


Hauptsatz der Differenzial- und Integralrechnung

Stammfunktionen bilden

Stammfunktion Definition


Satz: Bestimmung von Stammfunktionen


Beispiele

Hier findest du ein paar Beispiel Funktionen und ihre Stammfunktion.

Gelerntes Wiederholen und Vertiefen

Aufgabe 1: Integral und Flächeninhalt



Aufgabe 2: Geschwindigkeit-Zeit Diagramm



Aufgabe 3: Zusammenhang zwischen Stammfunktion und Funktion
GeoGebra


Aufgabe 4: Stammfunktionen graphisch zuordnen


Aufgaben mittlerer Schwierigkeit

Aufgabe 5: Kanalaufgabe


Aufgabe 6: Stammfunktion graphisch rekonstruieren


Aufgabe 7: Funktionsvorschrift der Stammfunktion ermitteln


Aufgabe 8: Bakterienwachstum

Knobelaufgaben

Aufgabe 9: CO₂-Gehalt in Teichen


Aufgabe 10: Gewinnermittlung eines Smartphone-Herstellers


Aufgabe 11: 100m-Sprint


Aufgabe 12: Corona Virus