Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Verhalten im Unendlichen und nahe Null
Das Verhalten einer Funktion im Unendlichen beschreibt, wie sich der Funktionswert verhält, wenn gegen geht, also wie f für sehr große positive und negative Werte von aussieht. Bei ganzrationalen Funktionen der Form kann man das Verhalten im Unendlichen untersuchen, indem man sich den Summanden des Funktionsterms mit dem größten Exponenten von anschaut. Betrachte also . Im Unendlichen verhalten sich und gleich, man kann also einfach das Verhalten im Unendlichen von untersuchen. Es gibt vier Fälle, die dabei unterschieden werden:
gerade | ungerade |
---|---|
gerade und :
verläuft "von links oben nach rechts oben", für |
ungerade und :
verläuft "von links unten nach rechts oben", für , für |
gerade und :
verläuft "von links unten nach rechts unten", für |
ungerade und :
verläuft "von links oben nach rechts unten", für , für |
Das Verhalten einer Funktion nahe Null beschreibt, wie sich der Funktionswert verhält, wenn gegen Null geht, also für sehr kleine Werte von . Eine ganzrationale Funktion der Form verhält sich nahe Null wie die Summe aus dem absoluten Glied und dem Summanden mit dem kleinsten Exponenten von , die im Funktionsterm auftaucht.
Wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Achte darauf, ob das Verhalten im Unendlichen oder nahe Null gefragt ist. Es kann helfen, dir Notizen zu machen. Falls du einen Tipp benötigst, klicke links oben auf die Glühlampe.
- verhält sich im Unendlichen wie .
- Für geht und für geht , da eine gerade Zahl ist und .
- Nahe Null verhält sich wie .
- Wenn man sich ein kleines Intervall um anschaut, sieht der Graph von dort lokal also aus wie eine Gerade mit der Steigung -3 und dem y-Achsenabschnitt 4. Der y-Achsenabschnitt von ist daher auch 4.
Falls du ein weiteres Beispiel sehen möchtest, klappe es auf:
- verhält sich im Unendlichen wie .
- Für geht und für geht , da eine ungerade Zahl ist und .
- Nahe Null verhält sich wie , also wie eine um den Faktor 4 gestreckte, nach oben geöffnete Parabel mit dem Scheitelpunkt bei . Ihr y-Achsenabschnitt liegt daher bei .
Beschreibe in deinem Heft das Verhalten der nachfolgenden Funktionen und Funktionenscharen im Unendlichen und nahe Null. Gehe dazu vor wie in den Merkboxen oben.
a)
b)
c) ⭐ mit
d) ⭐ mit