Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Änderungsrate zum Änderungseffekt
In diesem Kapitel kannst du die Idee und die Anwendung des Integrals wiederholen und durch gezielte Aufgaben üben und verbessern. Die Grundlage hierfür ist, dass du die Eigenschaften von Funktionen erkennst und untersuchen sowie ableiten kannst.
Du sollst hier für dich verinnerlichen, was überhaupt hinter dem Begriff des Integrals steckt und kannst darüber hinaus Grundlagen für die Anwendung mit Integralen wiederholen aber auch vertiefen.
Zum Einstieg findest du eine Herleitung des Integrals aus dem Kontext der Differentialrechnung. Dabei werden dir die zwei Oberbegriffe des Kapitels Änderungsrate und Änderungseffekt erläutert. Anschließend folgen einige Aufgaben zum Integral bei denen es besonders auf den Zusammenhang von Differential- und Integralrechnung ankommt. Die Aufgaben werden in drei unterschiedliche Schwierigkeitsstufen eingeteilt so dass du jederzeit die Möglichkeit hast auf deinem Leistungsstand zu arbeiten.
Die Unterscheidung erfolgt in Einführungsaufgaben, Grundlagenaufgaben und Knobelaufgaben. Zusätzlich findest du als Hilfestellung zu jeder Aufgabe Tipps. Wir empfehlen dir dennoch die Aufgaben so weit wie möglich selbstständig zu erarbeiten.Inhaltsverzeichnis
Herleitung des Integrals
Rechenregeln und Stammfunktionen bilden
Einführungsaufgaben
Grundlagenaufgaben
Ein Technik-Unternehmen hat ein neues Smartphone auf den Markt gebracht. Nach 9 Monaten will das Unternehmen prüfen, wie lukrativ das neue Handy in den ersten 9 Monaten war. Der monatliche Gewinn, der durch das Smartphone eingespielt wurde, kann durch die folgende Funktion dargestellt werden:
Die x-Achse gibt die Anzahl der Monate an und die y-Achse den Gewinn in Millionen (€).
- a) Berechne den Ertrag, den das Unternehmen in den ersten 2 Monaten durch das Smartphone einspielt hat.
- b) Berechne den Ertrag nach den ersten 7 Monaten.
- c) Berechne den Ertrag nach den kompletten 9 Monaten.
- d) In welchem Zeitraum erbringt das Smartphone ausschließlich Gewinn für das Unternehmen? Wie viel wird in dem Zeitraum eingenommen?
- e) Interpretiere die Ergebnisse aus den Aufgaben a), b), c) und überlege dir mögliche Begründungen für den erzielten Betrag. Sollte das Smartphone weiterhin produziert werden?
Hier sollst du dir Gedanken machen, ob einerseits deine Ergebnisse aus den vorherigen Aufgaben Sinn ergeben (solltest du natürlich nach jeder Aufgabe machen), und anschließend deine eigenen Begründungen der Ergebnisse festhalten. Zum Bespiel, könnte der anfängliche Verlust mit höheren Produktionskosten als Verkaufseinnahmen begründet werden (warum? plausible Begründung).
Zur Überlegung, ob es lukrativ ist, das Smartphone weiterhin zu produzieren, solltest du dir den Gewinn bzw. Verlust der gesamten 9 Monate anschauen und natürlich den Verlauf der Funktion, die die Einnahmen wiederspiegelt.- zu a)
- zu b)
- zu c)
- zu d)
- zu e) Das Smartphone sollte nicht weiter produziert werden, da durch die gegebene Funktion absehbar ist, dass es schon nach ca. 8 Monaten erneut Verluste für das Unternehmen einspielt.
Knobelaufgaben
Integral: Rekonstruieren von Größen
Ein zu Beginn leerer Wassertank wird durch dieselbe Leitung befüllt und entleert. In Figur ist die momentane Durchflussrate f der Leitung für das Intervall [0;9] dargestellt.
Es stellt sich die Frage wie aus der gegebenen Durchflussrate das Gesamtwasservolumen bestimmt werden kann? Dass bedeutet, wie viel Liter Wasser befinden sich nach 9 min im Wassertank?
Im Intervall [0;3] beträgt der Zufluss . In diesen 3 Minuten fließen in den Tank. 6 ist die Maßzahl des Flächeninhalts A1. Im Intervall [3;5] beträgt die mittlere Zuflussrate . In diesen 2 Minuten kommen dazu. 2 ist die Maßzahl des Flächeninhalts A2. Im Intevall [5;9] ist die Durchflussrate negativ. Es fließen ab. 6 ist die Maßzahl des Flächeninhalts A3. Man kann also die Gesamtänderung des Wasservolumens in einem Intervall [a;b] mit Flächeninhalten veranschaulichen, wenn man oberhalb der x-Achse liegende Flächen positiv und unterhalb der x-Achse liegenden Flächen negativ zählt. Dieser orientierte Flächeninhalt beträgt beim Wassertank:
A1 + A2 - A3 = 2 Flächeneinheiten
und entspricht einer Volumenänderung von 2 l. Da der Tank zu Beginn leer war, befinden sich jetzt insgesamt 2 l im Tank.
Du erkennst, dass der orientierte Flächeninhalt nicht mit dem Wert des Flächeninhalt zwischen Graph und x-Achse übereinstimmt. Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.
Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.
Betrachte folgendes Applet. Lasse dir mithilfe von diesem folgende Funktionen abbilden.
- f(x)=1
- f(x)=x
- f(x)=x^2
- f(x)=x^3 + 2x^2 + 2x - 1
Eine Funktion F heißt Stammfunktion zu einer Funktion f auf einem Intervall I, wenn für alle x in I gilt:
F'(x) = f(x).
Sind F und G Stammfunktionen von f auf einem Intervall I, dann gibt es eine Konstante c, sodass für alle x in I gilt:
F(x) = G(x)+c
Bearbeite die folgenden Aufgabe. Du benötigst einen Zettel und einen Stift, um deine Rechnungen und Ergebnisse festzuhalten.
a)
b)
Zeichne eine beliebige Stammfunktion zu folgenden Funktionen auf dem Intervall I=[-5;5]. Zeichne zunächst die Funktion und dann die Stammfunktion auf einen Zettel. Beschreibe dein Vorgehen für charakteristische Punkte (Nullstellen, Extrempunkte, etc.).
a) b)
c)
Satz: Stammfunktionen bestimmen (Buch S. 68)
Beispiel: Stammfunktion bestimmen
Aufgabe:
Aufgabe: Bestimme eine Stammfunktion folgender Funktionen:
- a)
- b)
2 Textaufgaben: