Benutzer:Buss-Haskert/Quadratische Funktionen/Verschiebung entlang der y-Achse

Aus ZUM Projektwiki

SEITE IM AUFBAU


4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c

f(x) = ax² + c Bedeutung des Parameters c

Untersuche die Bedeutung des Parameters c in der Gleichung f(x) = ax² + c mithilfe der Geometriesoftware GeoGebra.

  • Gib im Algebrafenster die Gleichung f(x) = x² ein. Es wird die Normalparabel gezeichnet.
  • Erstelle einen Schieberegler a.
  • Erstelle einen Schieberegler c.
  • Gib im Algebrafenster die Gleichung f(x) = ax² + c ein. Verändere den Wert von c mithilfe des Schiebereglers. (Die Bedeutung des Parameters a hast du schon erarbeitet.)
  • Wie verändert sich die Parabel? Notiere deine Beobachtungen.

Link zu GeoGebra

Falls du die Schieberegler nicht erstellen kannst, nutze das nachfolgende Applet.

GeoGebra


Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
Der Graph der Funktion f(x) = ax² + c ist eine Parabel mit dem Scheitelpunkt S(0|c). Der Faktor a bestimmt die Öffnung und Form der Parabel, der Summand c verschiebt den Scheitelpunkt entlang der y-Achse.


Übung 6

Löse die Aufgaben aus dem Buch

  • S. 13 Nr. 8
  • S. 14 Nr. 10
  • S. 14 Nr. 13
  • S. 14 Nr. 14
  • S. 14 Nr. 16 (Kontrolliere mit GeoGebra)

"Punktprobe"!

Setze die Koordinaten der Punkte in die Funktionsgleichungen ein und prüfe, ob eine wahre (w) Aussage oder falsche (f) Aussage entsteht. Demnach liegt der Punkt auf der Parabel bzw. nicht auf der Parabel.

Bilderfolge zu GeoGebra:
Verschobene Normalparabel spiegeln (GeoGebra) 1.png
Verschobene Normalparabel spiegeln (GeoGebra) 2.png
Verschobene Normalparabel spiegeln (GeoGebra) 3.png

Verschobene Normalparabel spiegeln (GeoGebra) 4.png


Übung 7: Modellieren mit quadratischen Funktionen
Löse die Aufgaben aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
  • S. 24 Nr. 1
  • S. 24 Nr. 2
  • S. 24 Nr. 3
  • S. 25 Nr. 4
  • S. 25 Nr. 5
  • S. 25 Nr. 8
  • S. 25 Nr. 9