Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum
In diesem Lernpfadkapitel werden Ebenen im Raum eingeführt. Neben Punkten, Vektoren und Geraden sind auch Ebenen wichtige Objekte der analytischen Geometrie.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
- Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Inhaltsverzeichnis
Die Parameterform und die Punktprobe
Eine Ebene ist bestimmt durch einen Punkt und zwei Vektoren und , die nicht parallel zueinander sind.
Diese Ebene kann wie folgt beschrieben werden:
Diese Vektorgleichung bezeichnet man als Parameterdarstellung/Parametergleichung der Ebene mit den Parametern und .
Um eine Parameterdarstellung aufzustellen, können, statt eines Punktes und zwei Vektoren auch:
- drei Punkte, die nicht alle auf einer Geraden liegen, oder
- eine Gerade und ein Punkt, der nicht auf der Geraden liegt, oder
- zwei sich schneidende Geraden, oder
- zwei echt parallele Geraden, genutzt werden.
Gegeben sind die Punkte , , . Bevor eine Ebenengleichung aufgestellt werden kann, muss ausgeschlossen werden, dass die drei Punkte auf einer Geraden liegen. Da bei den Punkten , , jeweils eine unterschiedliche Koordinate ist, folgt hier direkt, dass die Punkte nicht auf einer Geraden liegen.
Zum Aufspannen der Ebene wählen wir einen der Punkte als Aufpunkt. Seinen Ortsvektor verwenden wir als Stützvektor für die Ebene und berechnen von dort aus die zwei Spannvektoren , zu den anderen Punkten.
Aus unseren Punkten ergibt sich beispielhaft folgende Ebenengleichung .
Achtung: Die Wahl des Aufpunkts und die daraus resultierende Bestimmung der Spannvektoren ist beliebig. Die Parameterform ist daher nicht eindeutig.
Stelle aus den gegebenen Punkten eine Ebenengleichung in Parameterform auf. Achte dabei darauf, zunächst die Bedingung zu prüfen.
a) , und
Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.
b) , und
Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.
Kannst du hierzu auch jeweils eine zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt?
weitere mögliche Parameterform zu a)
weitere mögliche Parameterform zu b)
Furkan und Diego haben versucht zu drei gegebenen Punkten eine Parameterdarstellung einer Ebene aufzustellen. Beurteile inwiefern ihnen das gelungen ist.
Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren und die Ortsvektoren zu den Punkten und angegeben.
Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor des Punktes gewählt und als Spannvektoren die Vektoren und . Er hätte noch, wie Furkan es gemacht hat, dazuschreiben können, dass es nur eine der möglichen Parameterformen ist.
Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.
Die Punktprobe
Setzt man in die Ebenengleichung in Parameterform für die Variablen und Zahlen ein, erhält man den Ortsvektor zu einem Punkt in der Ebene.
Möchte man wissen, ob ein Punkt in der Ebene liegt, kann man umgekehrt den Ortsvektor für den Vektor einsetzen und ein lineares Gleichungssystem aufstellen.
Ist das Gleichungssystem eindeutig lösbar, so liegt der Punkt in der Ebene.
Liegt der Punkt in der Ebene ?
Wenn ja, dann müsste der zu gehörende Ortsvektor die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen geben, für die gilt:
Die Vektorgleichung ist gleichbedeutend mit dem System der Koordinatengleichungen
Dieses LGS könnt ihr mit dem Taschenrechner lösen.
Gegeben ist die Ebene mit
a) Liegt der Punkt in der Ebene?
b) Liegt der Punkt in der Ebene?
Es gilt:
Daraus ergibt sich das folgende Gleichungssystem:
Dieses LGS hat keine Lösung (Hinweis: dies könnt ihr handschriftlich oder mit dem Taschenrechner feststellen).
Der Punkt liegt also nicht in der Ebene .Es gilt:
Daraus ergibt sich das folgende Gleichungssystem:
Dieses LGS hat die Lösung und (Hinweis: dies könnt ihr handschriftlich oder mit dem Taschenrechner feststellen).
Der Punkt liegt also in der Ebene .
Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von m.
sind die Koordinaten einer Ecke der Grundfläche des Daches. Die diagonal gegenüberliegende Ecke der Grundfläche hat die Koordinaten .
a) Bestimme die Koordinaten der fehlenden Eckpunkte und , sowie der Dachspitze . Stelle die Ebenengleichung der Ebene auf, in der die Punkte , und liegen.
Die Punkte haben die folgenden Koordinaten: Punkt , Punkt und Punkt . Die Koordinaten des Punktes kannst du bestimmen, da die Spitze senkrecht über dem Mittelpunkt der Grundfläche der Pyramide steht. Die -Koordinate kann somit durch berechnet werden und die -Koordinate durch . Alternativ könntest du auch die - und die -Koordinate mithilfe der Diagonalen, also berechnen. Die -Koordinate ergibt sich aus der Höhe des Kirchturms.
Eine mögliche Parameterform der Ebene wäre:
b) Der Naturschutzbund NABU hat bei verschiedenen Störchen Peilsender am Fuß angebracht, die dauerhaft den Standort der Tiere übermitteln. Sie haben für einen der Störche die Koordinaten übermittelt. Befindet sich der Storch in der Ebene ?
Beurteile, ob der Storch auf dem Dach sitzt.
Um herauszufinden, ob die übermittelten Koordinaten in der Ebene liegen, kannst du eine Punktprobe durchführen.
Für das zugehörige Gleichungssystem ergibt sich:
Aus der ersten und dritten Gleichung folgt . Aus der zweiten Gleichung folgt dann durch Einsetzen von : . Das Gleichungssystem ist daher eindeutig lösbar und der Storch befindet sich in der Ebene.
Da es sich bei dem Dach um einen begrenzten Teil der Ebene handelt, muss zunächst betrachtet werden, für welche Werte von der Storch sich auf dem Dach befände. Da die Spannvektoren bereits jeweils die Strecke zu den äußersten Punkten der Ebene beschreiben und diese durch eine Gerade, in dem Fall der Dachkante, verbunden sind, muss gelten: . In dem Fall also: . Der Punkt liegt also genau auf der Kante und somit sitzt der Storch auf dem Dach.
Alternativ könnte man es sich geometrisch veranschaulichen, beispielsweise mithilfe von GeoGebra:
Wenn du deine bisher gesammelten Kenntnisse noch einmal wiederholen möchtest, kannst du das hiermit machen: Betrachte diese Aufgabe allerdings als Zusatzaufgabe.
In einem Koordinatensystem mit der Einheit m befindet sich ein U-Boot im Punkt und taucht auf einem Kurs in Richtung des Vektors nach oben auf. In welchem Punkt erreicht das U-Boot die Meeresoberfläche, wenn es seinen Kurs beibehält?
Betrachtet man, wie im Tipp angegeben, die Meeresoberfläche als -Ebene, so ist also der Schnittpunkt mit der -Ebene gesucht. Um die Lösung zu erhalten kann also für den Vektor einsetzen. Berechnet man mithilfe der dritten Zeile den Parameter, ergibt sich aus das Ergebnis . Damit lassen sich im Anschluss die fehlenden Koordinaten berechnen. Es ergibt sich insgesamt als Lösung:
Also taucht das U-Boot im Punkt auf.⭐ Geradlinig begrenzte Flächen
Nicht immer ist es ausreichend zu wissen, ob ein Punkt in einer Ebene liegt. Betrachtet man Sachaufgaben, so ist häufig eine begrenzte Fläche gegeben, die als Ebene modelliert wird. Die Ebene ist also in der Realität beschränkt. Dabei muss dann zunächst untersucht werden, durch welche Werte der Parameter die Fläche begrenzt wird. Es bietet sich häufig an, dafür die Eckpunkte zu betrachten. Stellt man fest, dass ein zu untersuchender Punkt in der Ebene liegt, muss im zweiten Schritt daher untersucht werden, ob die berechneten Parameter im „erlaubten Bereich“ liegen.
In der Skizze ist das Dach eines Hauses zu sehen. Die im Bild sichtbare Dachfläche liegt in einer Ebene, zu der in einem räumlichen Koordinatensystem der Punkt und die Richtungsvektoren und gehören (Angaben in m). Die Dachfläche misst m mal m.
a) Bestimmen Sie eine Parametergleichung für die Ebene, in der die Dachfläche liegt.
b) Man kann alle Punkte der Dachfläche beschreiben, indem man die Parameter für die Ebene einschränkt. Führen Sie dies durch.
c) Geben Sie die Koordinaten aller Eckpunkte der Dachfläche an. Bestimmen Sie außerdem drei Punkte, die außerhalb der Dachfläche, aber in derselben Ebene wie die Dachfläche liegen.
;
Für die Parameter gilt: und
Die Punkte der Dachfläche können beschrieben werden durch die Parameterdarstellungalso
also
also
Punkte, die außerhalb der Dachfläche liegen: z.B.:
⭐ Normalenvektor
Du benötigst für die Berechnung zwei Gleichungen. Die erste Gleichung erhältst du durch das Skalarprodukt des ersten Spannvektors mit dem Normalenvektor , das du gleich Null setzt. Um die zweite Gleichung zu erhalten führst du diesen Schritt nun mit dem zweiten Spannvektor durch. Diese zwei Gleichungen können auf diese Weise aufgestellt werden, da orthogonal auf der Ebene steht. Daher wissen wir, dass orthogonal auf den beiden Spannvektoren steht. Außerdem ist bekannt, dass das Skalarprodukt von zwei orthogonalen Vektoren gleich Null ist. Im Folgenden bilden diese beiden Gleichungen ein Gleichungssystem.
Für das Gleichungssystem gibt es mehrere Lösungsmöglichkeiten. Löse es, indem du eine der drei Unbekannten beliebig wählst und die anderen beiden Unbekannten berechnest.
Wichtig: Das , das du frei wählst, muss in beiden Gleichungen enthalten sein.
Gegeben seien die Ebenengleichung in Parameterform
a)
b)
Berechne einen Normalenvektor der Ebene.
Wir erhalten ein lineares Gleichungssystem mit zwei Gleichungen und drei Unbekannten. Da mehr Unbekannte vorliegen als Gleichungen, ist das LGS nicht eindeutig lösbar!
Es gibt hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Wollt ihr das Gleichungssystem per Hand lösen, würde es sich in diesem Fall anbieten Gleichung I und II zu addieren, damit wegfällt. Wir erhalten mit
den allgemeinen Normalenvektor in Abhängigkeit von :
Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .
Daraus folgt für den speziellen NormalenvektorMit demselben Verfahren wie bei Teilaufgabe a) ergibt sich für diese Ebene folgender Normalenvektor:
⭐ Normalenform und Koordinatenform von Ebenengleichungen
Bisher wurde eine Ebene mithilfe eines Aufpunkts und zwei Spannvektoren und beschrieben. Eine andere Möglichkeit ist, sie durch einen Aufpunkt und einen Normalenvektor zu beschreiben. Damit erhält man die Normalenform der Ebene. Sie hat die Form .
Zusätzlich lässt sich jede Ebene ebenfalls beschreiben durch eine Koordinatenform der Form . Dabei muss mindestens einer der Koeffizienten ungleich null sein. Die Koordinatenform erhält man aus der Normalenform durch Ausmultiplizieren und Berechnen von durch
Ist eine Koordinatenform der Ebene , so ist ein Normalenvektor dieser Ebene.
Eine Ebene durch hat den Normalenvektor
a) Gebe eine Normalengleichung der Ebene an.
b) Bestimme aus der Normalengleichung eine Koordinatengleichung der Ebene.
Mit dem Normalenvektor ergibt sich für die Koordinatengleichung der Ansatz: mit . Das heißt um zu bestimmen, berechnet man das Skalarprodukt von mit und erhält .
Lösung:c) Liegt der Punkt in der Ebene?
Bestimme für die Ebene in der Abbildung eine Gleichung in der Normalenform.
Zusatz: Bestimme auch die Koordinatengleichung der Ebene.
mögliche Lösung: ist der Aufpunkt. Den Normalenvektor berechnen wir mithilfe des Punktes . Damit ist , d.h. . Normalengleichung:
Die Koeffizienten der Koordinatengleichung können wir dem Normalenvektor entnehmen. Ansatz der Koordinatengleichung: mit . Um zu bestimmen, berechnet man also das Skalarprodukt von mit und erhält .
Koordinatengleichung:
⭐Überführung der Parameterform in die Koordinatenform
Bestimme eine Koordinatengleichung der Ebene .
Ein Normalenvektor muss zu den Spannvektoren orthogonal (senkrecht) sein.
Also ist und .
Hieraus folgt das Gleichungssystem
Es gibt auch hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Wollt ihr das Gleichungssystem per Hand lösen, geht ihr vor wie schon in den vorherigen Aufgaben. Dazu formt ihr die erste Gleichung um und erhaltet:
Durch Einsetzen der berechneten, von n_2 abhängigen Werte in die zweite Gleichung erhalten wir auch n_3 und damit den allgemeinen Normalenvektor in Abhängigkeit von :
Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .
Daraus folgt für den speziellen Normalenvektor
Das berechnen wir mithilfe des Normalenvektors und dem Ortsvektor des Aufpunktes, d.h. es ist :
Koordinatenform der Ebenengleichung:
Die Ebene ist durch die drei Punkte , , festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene .
Zum Aufstellen einer möglichen Parametergleichung wählen wir beispielsweise den Punkt als Aufpukt. Die Richtungsvektoren können beispielsweise berechnet werden durch als ersten Richtungsvektor und als zweiten. Somit setzt sich die Ebenengleichung wie folgt zusammen:
.
Damit ergibt sich:
Da ein Normalenvektor zu den Spannvektoren orthogonal (senkrecht) sein muss gilt und .
Hieraus folgt das Gleichungssystem
Um das Gleichungssystem per Hand zu lösen, behalten wir die erste Gleichung bei und ersetzen die zweite durch die Summe der beiden Gleichungen wodurch wir folgendes Gleichungssystem erhalten:
Zur Berechnung eines allgemeinen Normalenvektors formen wir die zweite Gleichung um und erhalten:
Durch Einsetzen von und in die erste Gleichung erhalten wir auch als von abhängigen Wert mit . Damit ergibt sich der allgemeine Normalenvektor:
Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .
Daraus folgt für den speziellen Normalenvektor .
Außerdem nutzen wir als Aufpunkt und erhalten somit:
Wir nutzen den eben berechneten Normalenvektor auch zum Aufstellen der Koordinatenform.
Das berechnen wir mithilfe des Skalarprodukts des Normalenvektors mit dem Orstvektor des Aufpunktes, d.h. es ist :
Damit ergibt sich folgende Koordinatengleichung:
⭐Arbeiten mit den unterschiedlichen Ebenengleichungen
Ein Tischfuß zeigt von einem Punkt des Fußbodens aus nach oben, die Tischplatte ist Längeneinheiten vom Boden entfernt. Bestimme eine Koordinatengleichung der Ebene, in der die Tischplatte liegt.
Zusatz: Gebe auch die Normalenform an.
ist der Punkt, in dem das Tischbein auf die Tischplatte trifft, liegt somit in der Ebene der Tischplatte und könnte beim Aufstellen der Normalen- oder Parametergleichung der Ebene als Aufpunkt genutzt werden. Den Normalenvektor, dessen Einträge wir als Koeffizienten der Koordinatengleichung der Ebene nutzen, berechnen wir nach dem gleichen Verfahren wie bereits in der vorherigen Aufgabe durch die Berechnung von . Das heißt, wir erhalten für den Normalenvektor:
Das berechnen wir mithilfe des Normalenvektors und dem Ortsvektor des Aufpunktes, d.h. es ist :
.
Koordinatengleichung:
Normalengleichung:
Die folgende Abbildung zeigt eine Karte des Marktplatzes in Bremen mit dem Rathaus, dem Dom und weiteren sehenswürdigen Gebäuden.
Legt man ein Koordinatensystem mit dem Koordinatenursprung in der Mitte des Marktplatzes, sodass die -Achse nach Süden, die -Achse nach Osten und die -Achse senkrecht in den Himmel zeigt. Vor dem Rathaus nimmt die Höhe des Marktplatzes nach Südwesten leicht ab. Dieser schräge Teil des Marktplatzes soll durch eine Ebene beschrieben werden.
a) Berechne einen möglichen Normalenvektor der Ebene E.
Ein Normalenvektor muss zu den Spannvektoren orthogonal (senkrecht) sein.
Also ist und .
Hieraus folgt das Gleichungssystem:
Es gibt auch hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Wollt ihr das Gleichungssystem per Hand lösen, geht ihr vor wie schon in Aufgabe 9 "Normalenvektor berechnen". Dazu formt ihr die erste Gleichung um und erhaltet:
Durch Einsetzen der berechneten, von abhängigen Werte, in die zweite Gleichung erhalten wir auch n_3 und damit den allgemeinen Normalenvektor in Abhängigkeit von :
Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .
Daraus folgt für den speziellen Normalenvektorb) Bestimme eine Koordinatengleichung der Ebene
Vor dem Rathaus steht das Denkmals „Roland von Bremen“ mit standhaftem Blick auf dem Dom. Sein Fußpunkt ist . Er wurde genau vertikal, d.h. senkrecht auf der -Ebene errichtet.
c) Bestimme derart, dass in der Ebene liegt.
Ein Baum mit dem Fußpunkt und der Spitze wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene beschrieben wird. Wo liegt der Schattenpunkt der Baumspitze auf dem Hang und wie lang ist der Schatten des Baumes? (Das Ergebnis kann in Metern angegeben werden.)
Der Schattenpunkt entspricht dem Schnitt der Ebene mit der Geraden, die durch verläuft und den Richtungsvektor der Sonnenstrahlen besitzt.
Geradengleichung:
Einsetzen der Zeilen der Geradengleichung in die Ebenengleichung:
Durch Umformen und Ausmultiplizieren erhält man:
Einsetzen von in die Geradengleichung ergibt den Schnittpunkt .
Schattenlänge des Baumes: .
Damit hat der Schatten des Baumes eine Länge von ca. .
a) Warum muss bei einer Koordinatengleichung einer Ebene mindestens einer der Koeffizienten ungleich null sein?
b) Begründe: Unterscheiden sich die Koordinatengleichungen der Form von zwei Ebenen nur in der Konstanten , dann sind die Ebenen zueinander parallel.
c) Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung die Koeffizienten und ungleich Null, aber ist, haben eine Gemeinsamkeit bezüglich ihrer Lage.