Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum

Aus ZUM Projektwiki
Wechseln zu: Navigation, Suche
Info

In diesem Lernpfadkapitel werden Ebenen im Raum eingeführt. Neben Punkten, Vektoren und Geraden sind auch Ebenen wichtige Objekte der analytischen Geometrie.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!


Die Parameterform und die Punktprobe

Merksatz: Die Parameterform

Eine Ebene ist bestimmt durch einen Punkt und zwei Vektoren und , die nicht parallel zueinander sind.

Ebene E

Diese Ebene kann wie folgt beschrieben werden:

Diese Vektorgleichung bezeichnet man als Parameterdarstellung/Parametergleichung der Ebene mit den Parametern und .

Um eine Parameterdarstellung aufzustellen, können, statt eines Punktes und zwei Vektoren auch:

  • drei Punkte, die nicht alle auf einer Geraden liegen, oder
  • eine Gerade und ein Punkt, der nicht auf der Geraden liegt, oder
  • zwei sich schneidende Geraden, oder
  • zwei echt parallele Geraden, genutzt werden.


Beispiel: Ebenengleichung aus drei Punkten bestimmen

Gegeben sind die Punkte , , . Bevor eine Ebenengleichung aufgestellt werden kann, muss ausgeschlossen werden, dass die drei Punkte auf einer Geraden liegen. Da bei den Punkten , , jeweils eine unterschiedliche Koordinate ist, folgt hier direkt, dass die Punkte nicht auf einer Geraden liegen.

Zum Aufspannen der Ebene wählen wir einen der Punkte als Aufpunkt. Seinen Ortsvektor verwenden wir als Stützvektor für die Ebene und berechnen von dort aus die zwei Spannvektoren , zu den anderen Punkten.

Aus unseren Punkten ergibt sich beispielhaft folgende Ebenengleichung .

Achtung: Die Wahl des Aufpunkts und die daraus resultierende Bestimmung der Spannvektoren ist beliebig. Die Parameterform ist daher nicht eindeutig.


Aufgabe 1: Aufstellen der Parameterform aus drei Punkten

Stelle aus den gegebenen Punkten eine Ebenengleichung in Parameterform auf. Achte dabei darauf, zunächst die Bedingung zu prüfen.

a)     , und

Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.

b)     , und

Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.

Kannst du hierzu auch jeweils eine zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt?

weitere mögliche Parameterform zu a)

weitere mögliche Parameterform zu b)


Aufgabe 2: Fehlersuche

Furkan und Diego haben versucht zu drei gegebenen Punkten eine Parameterdarstellung einer Ebene aufzustellen. Beurteile inwiefern ihnen das gelungen ist.

Furkans Rechnung
Diegos Rechnung









Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren und die Ortsvektoren zu den Punkten und angegeben.

Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor des Punktes gewählt und als Spannvektoren die Vektoren und . Er hätte noch, wie Furkan es gemacht hat, dazuschreiben können, dass es nur eine der möglichen Parameterformen ist.


Aufgabe 3: Lückentext zur Parameterform

Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.


Die Punktprobe

Merksatz: Die Punktprobe

Setzt man in die Ebenengleichung in Parameterform für die Variablen und Zahlen ein, erhält man den Ortsvektor zu einem Punkt in der Ebene.

Möchte man wissen, ob ein Punkt in der Ebene liegt, kann man umgekehrt den Ortsvektor für den Vektor einsetzen und ein lineares Gleichungssystem aufstellen.

Ist das Gleichungssystem eindeutig lösbar, so liegt der Punkt in der Ebene.


Beispiel: Punktprobe

Liegt der Punkt in der Ebene ?

Wenn ja, dann müsste der zu gehörende Ortsvektor die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen geben, für die gilt:


Die Vektorgleichung ist gleichbedeutend mit dem System der Koordinatengleichungen

Dieses LGS könnt ihr mit dem Taschenrechner lösen.

Das LGS ist eindeutig lösbar, das heißt der Punkt liegt in der Ebene .


Aufgabe 4: Punktprobe

Gegeben ist die Ebene mit

a) Liegt der Punkt in der Ebene?

b) Liegt der Punkt in der Ebene?


Es gilt:

Daraus ergibt sich das folgende Gleichungssystem:

Dieses LGS hat keine Lösung (Hinweis: dies könnt ihr handschriftlich oder mit dem Taschenrechner feststellen).

Der Punkt liegt also nicht in der Ebene .

Es gilt:

Daraus ergibt sich das folgende Gleichungssystem:

Dieses LGS hat die Lösung und (Hinweis: dies könnt ihr handschriftlich oder mit dem Taschenrechner feststellen).

Der Punkt liegt also in der Ebene .


Aufgabe 5: Kirchturm


Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von m. sind die Koordinaten einer Ecke der Grundfläche des Daches. Die diagonal gegenüberliegende Ecke der Grundfläche hat die Koordinaten .

a) Bestimme die Koordinaten der fehlenden Eckpunkte und , sowie der Dachspitze . Stelle die Ebenengleichung der Ebene auf, in der die Punkte , und liegen.

Die Punkte haben die folgenden Koordinaten: Punkt , Punkt und Punkt . Die Koordinaten des Punktes kannst du bestimmen, da die Spitze senkrecht über dem Mittelpunkt der Grundfläche der Pyramide steht. Die -Koordinate kann somit durch berechnet werden und die -Koordinate durch . Alternativ könntest du auch die - und die -Koordinate mithilfe der Diagonalen, also berechnen. Die -Koordinate ergibt sich aus der Höhe des Kirchturms.

Eine mögliche Parameterform der Ebene wäre:
Falls du noch weiter üben willst, kannst du auch die Ebenengleichungen der übrigen Dachseiten und der Grundfläche bestimmen.


b) Der Naturschutzbund NABU hat bei verschiedenen Störchen Peilsender am Fuß angebracht, die dauerhaft den Standort der Tiere übermitteln. Sie haben für einen der Störche die Koordinaten übermittelt. Befindet sich der Storch in der Ebene ? Beurteile, ob der Storch auf dem Dach sitzt.

Um herauszufinden, ob die übermittelten Koordinaten in der Ebene liegen, kannst du eine Punktprobe durchführen.

Für das zugehörige Gleichungssystem ergibt sich:

Aus der ersten und dritten Gleichung folgt . Aus der zweiten Gleichung folgt dann durch Einsetzen von : . Das Gleichungssystem ist daher eindeutig lösbar und der Storch befindet sich in der Ebene.

Da es sich bei dem Dach um einen begrenzten Teil der Ebene handelt, muss zunächst betrachtet werden, für welche Werte von der Storch sich auf dem Dach befände. Da die Spannvektoren bereits jeweils die Strecke zu den äußersten Punkten der Ebene beschreiben und diese durch eine Gerade, in dem Fall der Dachkante, verbunden sind, muss gelten: . In dem Fall also: . Der Punkt liegt also genau auf der Kante und somit sitzt der Storch auf dem Dach.

Alternativ könnte man es sich geometrisch veranschaulichen, beispielsweise mithilfe von GeoGebra:

100%


Aufgabe 6: Wiederholung zur Parameterform

Wenn du deine bisher gesammelten Kenntnisse noch einmal wiederholen möchtest, kannst du das hiermit machen: Betrachte diese Aufgabe allerdings als Zusatzaufgabe.


Aufgabe 7: Ein U-Boot taucht auf


In einem Koordinatensystem mit der Einheit m befindet sich ein U-Boot im Punkt und taucht auf einem Kurs in Richtung des Vektors nach oben auf. In welchem Punkt erreicht das U-Boot die Meeresoberfläche, wenn es seinen Kurs beibehält?

Betrachte vereinfachend die Meeresoberfläche als -Ebene.

Betrachtet man, wie im Tipp angegeben, die Meeresoberfläche als -Ebene, so ist also der Schnittpunkt mit der -Ebene gesucht. Um die Lösung zu erhalten kann also für den Vektor einsetzen. Berechnet man mithilfe der dritten Zeile den Parameter, ergibt sich aus das Ergebnis . Damit lassen sich im Anschluss die fehlenden Koordinaten berechnen. Es ergibt sich insgesamt als Lösung:

Also taucht das U-Boot im Punkt auf.

⭐ Geradlinig begrenzte Flächen

Merksatz: Geradlinig begrenzte Flächen

Nicht immer ist es ausreichend zu wissen, ob ein Punkt in einer Ebene liegt. Betrachtet man Sachaufgaben, so ist häufig eine begrenzte Fläche gegeben, die als Ebene modelliert wird. Die Ebene ist also in der Realität beschränkt. Dabei muss dann zunächst untersucht werden, durch welche Werte der Parameter die Fläche begrenzt wird. Es bietet sich häufig an, dafür die Eckpunkte zu betrachten. Stellt man fest, dass ein zu untersuchender Punkt in der Ebene liegt, muss im zweiten Schritt daher untersucht werden, ob die berechneten Parameter im „erlaubten Bereich“ liegen.


Aufgabe 8: Dachfläche

In der Skizze ist das Dach eines Hauses zu sehen. Die im Bild sichtbare Dachfläche liegt in einer Ebene, zu der in einem räumlichen Koordinatensystem der Punkt und die Richtungsvektoren und gehören (Angaben in m). Die Dachfläche misst m mal m.

a)    Bestimmen Sie eine Parametergleichung für die Ebene, in der die Dachfläche liegt.

b)   Man kann alle Punkte der Dachfläche beschreiben, indem man die Parameter für die Ebene einschränkt. Führen Sie dies durch.

c)    Geben Sie die Koordinaten aller Eckpunkte der Dachfläche an. Bestimmen Sie außerdem drei Punkte, die außerhalb der Dachfläche, aber in derselben Ebene wie die Dachfläche liegen.  

Eine Parametergleichung für die Ebene lautet:

 ;

Für die Parameter gilt: und

Die Punkte der Dachfläche können beschrieben werden durch die Parameterdarstellung

also

also

also

Punkte, die außerhalb der Dachfläche liegen: z.B.:

 

 

⭐ Normalenvektor

Merksatz: Normalenvektor

Ein Normalenvektor ist ein Vektor, der senkrecht (orthogonal) auf einer Ebene steht, das heißt, dass er orthogonal zu allen Spannvektoren der Ebene ist. Er wird üblicherweise mit dem Buchstaben bezeichnet.

Alle Normalenvektoren einer Ebene sind Vielfache voneinander. Bildschirmfoto 2021-04-20 um 01.18.48.png


Verfahren: Berechnung des Normalenvektors

Du benötigst für die Berechnung zwei Gleichungen. Die erste Gleichung erhältst du durch das Skalarprodukt des ersten Spannvektors mit dem Normalenvektor , das du gleich Null setzt. Um die zweite Gleichung zu erhalten führst du diesen Schritt nun mit dem zweiten Spannvektor durch. Diese zwei Gleichungen können auf diese Weise aufgestellt werden, da orthogonal auf der Ebene steht. Daher wissen wir, dass orthogonal auf den beiden Spannvektoren steht. Außerdem ist bekannt, dass das Skalarprodukt von zwei orthogonalen Vektoren gleich Null ist. Im Folgenden bilden diese beiden Gleichungen ein Gleichungssystem.

Für das Gleichungssystem gibt es mehrere Lösungsmöglichkeiten. Löse es, indem du eine der drei Unbekannten beliebig wählst und die anderen beiden Unbekannten berechnest.

Wichtig: Das , das du frei wählst, muss in beiden Gleichungen enthalten sein.


⭐Aufgabe 9: Normalenvektor berechnen


Gegeben seien die Ebenengleichung in Parameterform

a)

b)

Berechne einen Normalenvektor der Ebene.

und

Wir erhalten ein lineares Gleichungssystem mit zwei Gleichungen und drei Unbekannten. Da mehr Unbekannte vorliegen als Gleichungen, ist das LGS nicht eindeutig lösbar!



Es gibt hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Wollt ihr das Gleichungssystem per Hand lösen, würde es sich in diesem Fall anbieten Gleichung I und II zu addieren, damit wegfällt. Wir erhalten mit

den allgemeinen Normalenvektor in Abhängigkeit von :

Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .

Daraus folgt für den speziellen Normalenvektor

Mit demselben Verfahren wie bei Teilaufgabe a) ergibt sich für diese Ebene folgender Normalenvektor:

und mit der spezielle Normalenvektor

⭐ Normalenform und Koordinatenform von Ebenengleichungen

Merksatz: Normalen- und Koordinatenform

Bisher wurde eine Ebene mithilfe eines Aufpunkts und zwei Spannvektoren und beschrieben. Eine andere Möglichkeit ist, sie durch einen Aufpunkt und einen Normalenvektor zu beschreiben. Damit erhält man die Normalenform der Ebene. Sie hat die Form .

Alternativ lässt sich jede Ebene ebenfalls beschreiben durch eine Koordinatenform der Form . Dabei muss mindestens einer der Koeffizienten ungleich null sein. Die Koordinatenform erhält man aus der Normalenform durch Ausmultiplizieren und Berechnen von durch

Ist eine Koordinatenform der Ebene , so ist ein Normalenvektor dieser Ebene.


⭐Aufgabe 10: Aufstellen von Normalen- und Koordinatenform

Eine Ebene durch hat den Normalenvektor

a) Gebe eine Normalengleichung der Ebene an.

.

b) Bestimme aus der Normalengleichung eine Koordinatengleichung der Ebene.

Mit dem Normalenvektor ergibt sich für die Koordinatengleichung der Ansatz: mit . Das heißt um zu bestimmen, berechnet man das Skalarprodukt von und . Man erhält .

Lösung:

c) Liegt der Punkt in der Ebene?

Eine Punktprobe mithilfe der Koordinatenform einer Ebenengleichung führt man durch, indem man die Koordinaten für die Parameter in die Gleichung einsetzt und kontrolliert, ob die Aussage wahr ist.
. Der Punkt liegt nicht in der Ebene.


⭐Aufgabe 11: Aufstellen der Normalenform- und Koordinatenform


Bestimme für die Ebene in der Abbildung eine Gleichung in der Normalenform.

Ebene E

Zusatz: Bestimme auch die Koordinatengleichung der Ebene.

mögliche Lösung: ist der Aufpunkt. Den Normalenvektor berechnen wir mithilfe des Punktes . Damit ist , d.h. . Normalengleichung:

Die Koeffizienten der Koordinatengleichung können wir dem Normalenvektor entnehmen. Ansatz der Koordinatengleichung: mit . Um zu bestimmen, berechnet man also das Skalarprodukt von mit und erhält .

Koordinatengleichung:


⭐Überführung der Parameterform in die Koordinatenform

Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung

Wir suchen die Koordinatengleichung der Ebene .

Ein Normalenvektor muss zu den Spannvektoren und orthogonal (senkrecht) sein, also ist

Hieraus folgt:

Es gibt auch hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Willst du das Gleichungssystem per Hand lösen kannst du in der ersten Gleichung auf beiden Seite rechnen und erhält . Das Ergebnis für setzt du in die zweite Gleichung ein und berechnest so in Abhängigkeit von und erhälst:

Durch Einsetzen der berechneten, von n_2 abhängigen Werte in die zweite Gleichung erhalten wir auch n_3 und damit den allgemeinen Normalenvektor in Abhängigkeit von :

Wählt man z.B. , so erhält man und und damit .

Ansatz für die Koordinatengleichung: .

Das berechnen wir mithilfe des Normalenvektors und dem Ortsvektor des Aufpunktes, d.h. es ist :

.

Koordinatengleichung:


⭐Aufgabe 12: Koordinatengleichung aus Parametergleichung

Bestimme eine Koordinatengleichung der Ebene .

Ein Normalenvektor muss zu den Spannvektoren orthogonal (senkrecht) sein.

Also ist und .

Hieraus folgt das Gleichungssystem

Es gibt auch hier zwei Berechnungsmöglichkeiten - per Hand oder per Taschenrechner. Wollt ihr das Gleichungssystem per Hand lösen, geht ihr vor wie schon in den vorherigen Aufgaben. Dazu formt ihr die erste Gleichung um und erhaltet:

Durch Einsetzen der berechneten, von abhängigen Werte in die zweite Gleichung erhalten wir auch und damit den allgemeinen Normalenvektor in Abhängigkeit von :

Für einen speziellen Normalenvektor wählen wir für eine beliebige Zahl aus. Die wählen wir so, dass insgesamt ganzzahlige Zahlen raus kommen. Wenn ist, dann folgt für und für .

Daraus folgt für den speziellen Normalenvektor

Das berechnen wir mithilfe des Normalenvektors und dem Ortsvektor des Aufpunktes, d.h. es ist :

Koordinatenform der Ebenengleichung:


⭐Aufgabe 13: Parameter-, Normalen- und Koordinatengleichung

Die Ebene ist durch die drei Punkte , , festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene .

Zum Aufstellen einer möglichen Parametergleichung wählen wir beispielsweise den Punkt als Aufpukt. Die Richtungsvektoren können beispielsweise berechnet werden durch als ersten Richtungsvektor und als zweiten. Somit setzt sich die Ebenengleichung wie folgt zusammen:

.

Damit ergibt sich:

Da ein Normalenvektor zu den Spannvektoren orthogonal (senkrecht) sein muss gilt und .

Hieraus folgt das Gleichungssystem

Um das Gleichungssystem per Hand zu lösen, behalten wir die erste Gleichung bei und ersetzen die zweite durch die Summe der beiden Gleichungen wodurch wir folgendes Gleichungssystem erhalten:

Zur Berechnung eines allgemeinen Normalenvektors formen wir die zweite Gleichung um und erhalten:

Durch Einsetzen von in die erste Gleichung erhalten wir auch als von abhängigen Wert mit . Damit ergibt sich der allgemeine Normalenvektor: