Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Natürliche Zahlen/Natürliche Zahlen schriftlich addieren und subtrahieren
Inhaltsverzeichnis
Info
In diesem Lernpfadunterkapitel wiederholst du...
- natürliche Zahlen schriftlich zu addieren und subtrahieren
- Fachbegriffe, Rechengesetze sowie Rechenvorteile zur Addition und Subtraktion
Addition von natürlichen Zahlen
Die schriftliche Addition hilft dir, größere und mehrere Zahlen zu addieren.
Schreibe die Zahlen immer stellengerecht untereinander:
Einer unter Einer, Zehner unter Zehner, ...Es gibt zwei verschiedene Arten der schriftlichen Addition:
- Die Addition ohne Übertrag
- Die Addition mit Übertrag
Die Addition ohne Übertrag
Du beginnst mit der Addition rechts.
Beispiel:
Die Addition mit Übertrag
Du beginnst wieder rechts mit der Addition.
Beispiel:
Subtraktion von natürlichen Zahlen
Die schriftliche Subtraktion hilft dir, größere und mehrere Zahlen zu subtrahieren.
Schreibe die Zahlen immer stellengerecht untereinander:
Einer unter Einer, Zehner unter Zehner, ...
Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:
- Die Subtraktion ohne Übertrag
- Die Subtraktion mit Übertrag
Die Subtraktion ohne Übertrag
Du beginnst mit der Subtraktion rechts. Die untere Zahl wird dabei zur oberen Zahl ergänzt.
Beispiel:
Die Subtraktion mit Übertrag
Du beginnst wieder rechts mit der Subtraktion.
Beispiel:
Fachbegriffe und Rechengesetze
Das Vertauschungsgesetz (Kommutativgesetz) besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich. Beispiel: 83 + 92 =92 + 83
Vorsicht bei der Subtraktion
Untersuche das Vertauschen bei der Subtraktion.
Beispiel:
100 - 50 + 45 = 95
100 - 45 + 50 = 105
Also ist 100 - 50 + 45 nicht das gleiche wie 100 - 45 + 50.
Beim Subtrahieren kannst du Minuend und Subtrahend nicht vertauschen. Das Vertauschen von Subtrahend und Minuend führt nicht zum richtigen Ergebniss.
Das Verbindungsgesetz (Assoziativgesetz) besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).
Beispiel:
26 + 73 + 37 = (26 + 73) + 37
26 + 73 + 37 = 26 + (73 + 37)
Vorsicht bei der Subtraktion
Untersuche das Setzen von Klammern bei der Subtraktion.
Beispiel:
(123 - 73) - 27 = 50 - 27 = 23
123 - (73 - 27) = 123 - 46 = 77
Also ist (123 - 73) - 27 nicht das gleiche wie 123 - (73 - 27).
Beim Subtrahieren kannst du nicht beliebig Klammern setzen. Das Setzen von Klammern bei der Subtraktion führt zu unterschiedlichen Ergebnisse.
Gemischte Aufgaben
Rechnung: 2 km + 3 km + 800 m = 2000 m + 3000 m + 800 m = 5800 m
Aysen ist insgesamt 5800 m gelaufen.