Benutzer:Buss-Haskert/Quadratische Funktionen/Verschiebung entlang der y-Achse
SEITE IM AUFBAU
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
Link zu GeoGebra
Falls du die Schieberegler nicht erstellen kannst, nutze das nachfolgende Applet.
"Punktprobe"!
Alle Schaubilder sind entlang der y-Achse verschobene Parabeln, da die Gleichungen immer die Form f(x)=ax²+c haben. Skizziere jeweils die Parabel und überlege, welche Bedeutung die gesuchte Größe hat:
- Scheitelpunkt S (höchster/tiefster Punkt)
- Nullstellen N1/N2 (Schnittpunkte mit der x-Achse; also y = 0!)
- beliebiger Punkt auf der Parabel
Skizze: f(x) = 0,0125x² - 12
Die Parabel ist nach oben geöffnet, gestaucht (wegen 0,0125) und um 12 Einheiten entlang der y-Achse nach unten verschoben (wegen -12)
Der Durchmesser der Antenne entspricht dem Abstand zwischen den beiden Nullstellen N1 und N2.
Bestimme die Nullstellen: Dort gilt y = 0 !! (bzw. f(x) = 0)
0,0125x² - 12 = 0 |+12
0,0125x² = 12 |:0,0125
x² = 960 |
x1 = -30,98; x2 = +30,98