Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme
Inhaltsverzeichnis
Einführung: Optimierungsprobleme
Optimierungsprobleme , oder auch Extremwertprobleme, beschreiben eine Aufgabenform, bei der nach dem optimalen Wert einer Funktion gefragt wird. Dieser optimale Wert ist oftmals ein Extremwert, also ein Maximum oder ein Minimum.
Die Berechnung erfolgt dabei im Sachzusammenhang, es wird also beispielsweise nach dem minimalen Volumen einer Schachtel gefragt, die man mit einem Blatt Papier falten kann, oder nach dem maximalen Flächeninhalt eines Grundstücks, das man mit einer bestimmten Meterzahl an Zaunteilen einzäunen kann.
Die Funktion, deren Extremwert es zu bestimmen gilt, muss also noch ermittelt werden.Vorgehen beim Lösen von Extremwertproblemen
Schritt 1: Erfasse das Problem
- Suche zunächst zur Größe, die optimiert, die passende Funktion. Überlege dir dazu genau:
- Welche Größen kommen vor?
- Welche Größe soll optimiert, also maximiert oder minimiert werden?
Du kannst ebenfalls eine Skizze zum Problem erstellen.
Schritt 2: Stelle einen funktionalen Zusammenhang her
- Du musst nun das Optimierungsproblem als Funktion ausdrücken. Stelle dazu erst einmal die Formel für die Größe auf, die du optimieren möchtest. Das ist dann deine Hauptbedingung.
- Betrachte jetzt deinen beiden Größen. Wie hängen sie zusammen? Stelle eine Formel mit beiden Größen auf. Diese ist deine Nebenbedingung.
- Setze jetzt deine Nebenbedingung in die Hauptbedingung ein. So erhältst du eine Zielfunktion mit nur einer Größe.
- Lege jetzt den Bereich für deine verbleibende Größe fest:
- Wie groß darf sie maximal sein?
- Wie klein darf sie maximal sein?
Schritt 3: Bestimme den Extremwert
Rechne nun deinen Extremwert aus. Dazu musst du nun wie folgt vorgehen:
- Bilde die Ableitung der Zielfunktion.
- Berechne den Extremwert über die notwendige und hinreichende Bedingung.
- Überprüfe, ob dein Extremwert in deinem gewählten Bereich liegt.
Aufgabe:
Ein Sportplatz mit einer 400-m-Laufbahn soll so angelegt werden, dass das Fußballfeld möglichst groß ist. Die seitlichen Kurven des Sportplatzes sollen Halbkreise sein.
a) Für welche Länge und für weiche Breite wird das Fußballfeld im Inneren des Sportplatzes maximal?
b) Wie groß ist das Fussballfeld?
Lösung
Schritt 1:
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes.
Schritt 2:
Die Formel zum Flächeninhalt ist . Dies ist deine Hauptbedingung.
Deine Nebenbedingung findest du im Umfang wieder: . Diese kannst du nach b umstellen und erhälst:
Setze nun deine Nebenbedingung in deine Hauptbedigung ein und erhalte die Zielfunktion:
.
Für diese Funktion kann b nur zwischen 0 und 200 liegen, also
Schritt 3:
Berechne nun deinen Extremwert. Bilde dazu die Ableitungen:
Mit der notwendigen Bedingung erhälst du dann . Mit der hinreichenden Bedindung folgt , somit erfüllt alle Bedingungen
Berechne nun und den Flächeninhalt:
- und
Globales Extremum und Randextremum
Der größte Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Maximum. Der kleinste Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Minimum.
Ein globales Extremum an einer Randstelle der Definitionsmenge heißt Randextremum.
Optimierungsprobleme & Funktionenscharen
In bestimmten Fällen kann es vorkommen, dass die erhaltene Funktion nicht nur von einer Variable x abhängt, sondern außerdem von einem Parameter a.
In diesem Fall ändert sich die Vorgehensweise bei der Berechnung des Extremwertes zwar nicht, allerdings ist das erhaltene Ergebnis dann abhängig von a.