Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Dezimalzahlen und Umgang mit Größen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 151: | Zeile 151: | ||
</div> | </div> | ||
Wenn du alle Lücken richtig ausgefüllt hast, schreibe den Merksatz auf dein Arbeitsblatt. | ''Wenn du alle Lücken richtig ausgefüllt hast, schreibe den Merksatz auf dein Arbeitsblatt.'' | ||
| 3 = Merksatz | | 3 = Merksatz | ||
| Farbe = {{Farbe|grün|dunkel}} | | Farbe = {{Farbe|grün|dunkel}} | ||
Zeile 222: | Zeile 222: | ||
===Verhältnisse von Größen=== | ===Verhältnisse von Größen=== | ||
{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz 4: Größen und Verhältnisse von Größen | {{Box | ||
| Du kennst bereits die verschiedenen Größen Gewicht, Länge, Geld und Zeit. Ein Vergleich kann immer nur innerhalb einer Größe stattfinden, d.h. du kannst nicht 3 kg mit 50 m vergleichen. Die Größen werden durch verschiedene Einheiten angegeben, die du beim Vergleich beachten musst. Erinnerung: | | 1 = [[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz 4: Größen und Verhältnisse von Größen | ||
| 2 = Du kennst bereits die verschiedenen Größen Gewicht, Länge, Geld und Zeit. Ein Vergleich kann immer nur innerhalb einer Größe stattfinden, d.h. du kannst nicht 3 kg mit 50 m vergleichen. Die Größen werden durch verschiedene Einheiten angegeben, die du beim Vergleich beachten musst. Erinnerung: | |||
* Gewicht: ... mg < g < kg < t ..., wobei die Einheiten sich jeweils um den Faktor 1000 unterscheiden | * Gewicht: ... mg < g < kg < t ..., wobei die Einheiten sich jeweils um den Faktor 1000 unterscheiden | ||
* Länge: mm < cm < dm < m < km ..., wobei sich die Einheiten von mm bis m jeweils um den Faktor 10 unterscheiden und m und km um den Faktor 1000 | * Länge: mm < cm < dm < m < km ..., wobei sich die Einheiten von mm bis m jeweils um den Faktor 10 unterscheiden und m und km um den Faktor 1000 | ||
* Geld: ct < €, wobei 100ct = 1€ | * Geld: ct < €, wobei 100ct = 1€ | ||
* Zeit: ... s < min < h < d (Tage) < Jahre, wobei 60 s = 1 min, 60 min = 1 h, 24 h = 1 d und 365 d = 1 Jahr | * Zeit: ... s < min < h < d (Tage) < Jahre, wobei 60 s = 1 min, 60 min = 1 h, 24 h = 1 d und 365 d = 1 Jahr | ||
Tipp: Wenn du zwei Größen vergleichen willst, z.B. 1500 g und 2 kg, so bringe alle Größen auf dieselbe Einheit und vergleiche dann: 2 kg = 2000 g --> 1500 g < 20000 g = 2 kg|Merksatz | Tipp: Wenn du zwei Größen vergleichen willst, z.B. 1500 g und 2 kg, so bringe alle Größen auf dieselbe Einheit und vergleiche dann: 2 kg = 2000 g --> 1500 g < 20000 g = 2 kg | ||
| 3 = Merksatz | |||
| Farbe = {{Farbe|grün}} | | Farbe = {{Farbe|grün}} | ||
}} | }} | ||
Zeile 246: | Zeile 248: | ||
</div> | </div> | ||
Wenn du alle Lücken richtig ausgefüllt hast, schreibe den Merksatz auf dein Arbeitsblatt. | ''Wenn du alle Lücken richtig ausgefüllt hast, schreibe den Merksatz auf dein Arbeitsblatt.'' | ||
| 3 = Merksatz | | 3 = Merksatz | ||
| Farbe = {{Farbe|grün|dunkel}} | | Farbe = {{Farbe|grün|dunkel}} | ||
}} | }} | ||
{{ | {{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe ?? (**): Einheiten|Schreibe in der angegebenen Einheit. | ||
Schreibe in der angegebenen Einheit. | |||
a) 2,68 m (in dm) | a) 2,68 m (in dm) | ||
Zeile 258: | Zeile 259: | ||
b) 420 g (in kg) | b) 420 g (in kg) | ||
Lösung: | {{Lösung versteckt|1=Lösung: | ||
a) 2,68m = 26,8dm, da in eine kleinere Maßeinheit überführt werden soll, mit 1m = 10dm, muss das Komma eine Stelle nach rechts verschoben werden. | a) 2,68m = 26,8dm, da in eine kleinere Maßeinheit überführt werden soll, mit 1m = 10dm, muss das Komma eine Stelle nach rechts verschoben werden. | ||
b) 420g = 0,42kg, da in eine größere Maßeinheit überführt werden soll, mit 1000g = 1kg, muss das Komma drei Stellen nach links verschoben werden.|2=Beispiel|3=Lösung verbergen}} | b) 420g = 0,42kg, da in eine größere Maßeinheit überführt werden soll, mit 1000g = 1kg, muss das Komma drei Stellen nach links verschoben werden.|2=Beispiel|3=Lösung verbergen}}|Aufgabe | ||
| Farbe = #CD2990 | |||
}} | |||
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 5.1 (**): Umrechnen von Größen|{{LearningApp|width=100%|height=500px|app=35502421}}|Aufgabe | {{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 5.1 (**): Umrechnen von Größen|{{LearningApp|width=100%|height=500px|app=35502421}}|Aufgabe |
Version vom 2. Mai 2024, 09:06 Uhr
Einführung
Dezimalzahlen tauchen in unserem Alltag fast überall auf. Wenn wir in den Supermarkt gehen oder unsere Größe messen, du merkst schnell, dass unser Alltag bei natürlichen Zahlen und Brüchen nicht Halt macht. Deswegen kannst du die Dezimalzahlen und den Umgang mit Größen in diesem Lernpfad mit den wichtigsten Begriffen und Rechengesetzen wiederholen.
Erinnerst du dich noch an die Dezimalzahlen?
Vor- und Nachkommastelle in der Stellenwerttafel
Dezimalzahlen in der Welt der Größen
Drei Darstellungszahlen einer rationalen Zahl
Das Geheimnis des Rundens von Dezimalzahlen
Rechengesetze
Addition und Subtraktion von Dezimalzahlen
Multiplikation von Dezimalzahlen
Leichtere Aufgabe zur Multiplikation
Verhältnisse von Größen
Das schreibt man:
{{Box| Titel | Inhalt | class }}
Als Klassen/class stehen einige Varianten zur Verfügung wie Hervorhebung1, Hervorhebung2, Zitat, ... , allerdings ist dies optional (siehe Beispiele!)
Das sieht man:
<div style="margin: 0 auto .5rem; overflow:hidden; border-left: 7px solid #ececec;">
{{{1}}}
{{{2}}}