Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Natürliche Zahlen/Natürliche Zahlen schriftlich addieren und subtrahieren: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Die Seite wurde neu angelegt: „hallo“)
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
hallo
==Info==
Zahlen begegnen dir jeden Tag: Mitglieder einer AG, Besucher im Stadion, verkaufte Handys. Das sind „natürliche“ Zahlen. Wenn du loszählst, 0, 1, 2, 3 und so weiter, erhältst du die natürlichen Zahlen.
 
In diesem Lernpfadunterkapitel wiederholst du...
*natürliche Zahlen schriftlich zu addieren und subtrahieren
*Fachbegriffe, Rechengesetze sowie Rechenvorteile zur Addition und Subtraktion
==Addition von natürlichen Zahlen==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]]Aufgabe 1: Zahlenmauer *|<ggb_applet id="v5t8qkpv" width="1000" height="500"/>|Üben
}}{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 2: Schriftliches Addieren bis 1000 *|Löse die Aufgaben schriftlich mit Stift und Papier. Verbinde danach die Rechnungen mit den passenden Ergebnissen. Falls du etwas falsch verbindest kannst du auf den Tesa-Streifen, der die zwei Kärtchen zusammen hält klicken und die 2 Karten lösen sich.
{{LearningApp|width=100%|height=500px|app=7227712}}|Üben
}}{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 3: Schriftliches Addieren mit großen Zahlen **|{{LearningApp|width=100%|height=500px|app=299957}}|Üben
}}{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Addition|Die '''schriftliche Addition''' hilft dir, größere und mehrere Zahlen zu addieren.
 
Schreibe die Zahlen immer '''stellengerecht '''untereinander:
 
Einer unter Einer, Zehner unter Zehner, ... [[Datei:Stellenwerttafel Addition.png|mini|187x187px]]
 
Es gibt zwei verschiedene Arten der schriftlichen Addition:
 
* Die Addition '''ohne '''Übertrag
 
* Die Addition '''mit '''Übertrag
 
 
'''Die Addition ''ohne'' Übertrag'''
 
Du beginnst mit der Addition '''rechts'''.
 
'''Beispiel''':
 
[[Datei:Addition ohne Übertrag.png|mini|links|250x250px]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Die Addition ''mit'' Übertrag'''
 
Du beginnst wieder '''rechts''' mit der Addition.
 
'''Beispiel''':
 
[[Datei:Addition mit Übertrag.png|mini|links|328x328px]]|Hervorhebung2
}}
==Subtraktion von natürlichen Zahlen==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 4: Schriftliches Subtrahieren *|{{LearningApp|width=100%|height=500px|app=25577109}}|Üben
}}{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Aufgabe 5: Schriftliches Subtrahieren mit großen Zahlen **|{{LearningApp|width=100%|height=500px|app=299898}}|Üben
}}{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zur schriftlichen Subtraktion|Die '''schriftliche Subtraktion''' hilft dir, größere und mehrere Zahlen zu subtrahieren.
 
Schreibe die Zahlen immer '''stellengerecht '''untereinander:
 
Einer unter Einer, Zehner unter Zehner, ...
 
[[Datei:Stellenwerttafel Subtraktion.png|mini]]
 
Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:
 
* Die Subtraktion '''ohne '''Übertrag
 
* Die Subtraktion '''mit '''Übertrag
 
 
'''Die Subtraktion ''ohne'' Übertrag'''
 
Du beginnst mit der Subtraktion '''rechts'''. Die untere Zahl wird dabei zur oberen Zahl ergänzt.
 
'''Beispiel''':
 
[[Datei:Subtraktion ohne Übertrag.png|mini|links|250x250px]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Die Subtraktion ''mit'' Übertrag'''
 
Du beginnst wieder '''rechts''' mit der Subtraktion.
 
'''Beispiel''':
 
[[Datei:Subtraktion mit Übertrag.png|mini|links|328x328px]]|Hervorhebung2
}}
==Fachbegriffe und Rechengesetze==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]]Aufgabe 6: Fachbegriffe zur Addition und Subtraktion **|{{LearningApp|width=100%|height=500px|app=14302180}}|Üben
}}{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz zu Fachbegriffen|'''Addition'''                                             
 
[[Datei:Grundbegriffe der Addition.png|links|1800px|mini]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Subtraktion'''
[[Datei:Subtraktio.png|links|1800px|mini]]|Hervorhebung2
}}{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]]Aufgabe 7: Die Rechengesetze **|<ggb_applet id="nwufy9pt" width="1000" height="600"/>|Üben
}}{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Vertauschungsgesetz (Kommutativgesetz)
| Das '''Vertauschungsgesetz (Kommutativgesetz)''' besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich.
 
'''Beispiel''': 83 + 92 = 92 + 83
 
 
'''''Vorsicht bei der Subtraktion'''''
 
Untersuche das Vertauschen bei der Subtraktion.
 
'''Beispiel''':
 
100 - 50 + 45 = 95
 
100 - 45 + 50 = 105
 
Also ist 100 - 50 + 45 '''nicht '''das gleiche wie 100 - 45 + 50.
 
Beim '''''Subtrahieren '''''kannst du '''Minuend''' und '''Subtrahend''' '''nicht''' vertauschen. Das Vertauschen ergibt unterschiedliche Ergebnisse.|Hervorhebung2
}}{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz Verbindungsgesetz (Assoziativgesetz)
| Das '''Verbindungsgesetz (Assoziativgesetz)''' besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).
 
'''Beispiel''':
 
26 + 73 + 37 = (26 + 73) + 37
 
26 + 73 + 37 = 26 + (73 + 37)
 
 
'''''Vorsicht bei der Subtraktion'''''
 
Untersuche das Setzen von Klammern bei der Subtraktion.
 
'''Beispiel''':
 
(123 - 73) - 27 = 50 - 27 = 23
 
123 - (73 - 27) = 123 - 46 = 77
 
Also ist (123 - 73) - 27 '''nicht '''das gleiche wie 123 - (73 - 27).
 
Beim '''''Subtrahieren '''''kannst du '''nicht '''beliebig Klammern setzen. Das Setzen von Klammern führt zu unterschiedlichen Ergebnissen.|Hervorhebung2
}}
==Gemischte Aufgaben==
===Textaufgaben===
{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Tipp Verfahren bei Textaufgaben|Suche bei Anwendungsaufgaben nach '''Signalwörtern'''. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.|Unterrichtsidee
}}{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Tipp Signalwärter|{{Lösung versteckt|1=
Diese Signalwörter sagen dir, dass du '''subtrahierst''':
* vermindert
* weniger
* Abnahme
* wegnehmen
* verringern
* abziehen
 
Diese Signalwörter sagen dir, dass du '''addierst''':
* vermehrt
* mehr
* Zuwachs
* dazu
* hinzufügen
 
|2=Signalwörter|3=Signalwörter verstecken}}|Unterrichtsidee
}}
====Waffelverkauf====
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]]Waffelverkauf **|[[Datei:Waffelverkauf.png|mini]]Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient. Für ihr Sommerfest gibt die Klasse 80 € für Getränke und Essen aus. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?|Üben
}}{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Lösung|{{Lösung versteckt|1=Rechnung: 120 + 48 - 80 = 168 - 80 = 88
 
Die 6b hat nach dem Sommerfest 88 € in der Klassenklasse.|2=Lösung|3=Lösung verstecken}}|Unterrichtsidee
}}
====Laufen====
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] Laufen **|[[Datei:Laufen.png|mini]]
Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, am Mittwoch 3 km, aber am Freitag nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?|Üben
}}{{Box|[[Datei:Check-Logo.png|links|rahmenlos|30x30px]] Hinweis: Rechnen mit Einheiten & Lösung|{{Lösung versteckt|1= Wenn in einer Aufgabe Zahlen mit verschiedenen Einheiten vorkommen, wandelst du die Einheiten so um, dass du nur noch eine Einheit hast. Dann kannst du wie gewohnt rechnen.
|2=Hinweis|3=Hinweis verstecken}}
{{Lösung versteckt|1=Rechnung:
2 km + 3 km + 800 m
= 2000 m + 3000 m + 800 m
= 5800 m
Aysen ist insgesamt 5800 m gelaufen.|2=Lösung|3=Lösung verstecken}}|Unterrichtsidee
}}
===Bonusaufgabe zum Knobeln===
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] ***|{{LearningApp|width=100%|height=500px|app=3920933}}|Üben
}}

Version vom 16. April 2024, 05:48 Uhr

Info

Zahlen begegnen dir jeden Tag: Mitglieder einer AG, Besucher im Stadion, verkaufte Handys. Das sind „natürliche“ Zahlen. Wenn du loszählst, 0, 1, 2, 3 und so weiter, erhältst du die natürlichen Zahlen.

In diesem Lernpfadunterkapitel wiederholst du...

  • natürliche Zahlen schriftlich zu addieren und subtrahieren
  • Fachbegriffe, Rechengesetze sowie Rechenvorteile zur Addition und Subtraktion

Addition von natürlichen Zahlen

Icon-pencil-9576.svg
Aufgabe 1: Zahlenmauer *
GeoGebra
Icon-pencil-9576.svg
Aufgabe 2: Schriftliches Addieren bis 1000 *

Löse die Aufgaben schriftlich mit Stift und Papier. Verbinde danach die Rechnungen mit den passenden Ergebnissen. Falls du etwas falsch verbindest kannst du auf den Tesa-Streifen, der die zwei Kärtchen zusammen hält klicken und die 2 Karten lösen sich.

Icon-pencil-9576.svg
Aufgabe 3: Schriftliches Addieren mit großen Zahlen **

Icon-Pinnnadel.svg
Merksatz zur schriftlichen Addition

Die schriftliche Addition hilft dir, größere und mehrere Zahlen zu addieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...
Stellenwerttafel Addition.png

Es gibt zwei verschiedene Arten der schriftlichen Addition:

  • Die Addition ohne Übertrag
  • Die Addition mit Übertrag


Die Addition ohne Übertrag

Du beginnst mit der Addition rechts.

Beispiel:

Addition ohne Übertrag.png








Die Addition mit Übertrag

Du beginnst wieder rechts mit der Addition.

Beispiel:

Addition mit Übertrag.png

Subtraktion von natürlichen Zahlen

Icon-pencil-9576.svg
Aufgabe 4: Schriftliches Subtrahieren *

Icon-pencil-9576.svg
Aufgabe 5: Schriftliches Subtrahieren mit großen Zahlen **

Icon-Pinnnadel.svg
Merksatz zur schriftlichen Subtraktion

Die schriftliche Subtraktion hilft dir, größere und mehrere Zahlen zu subtrahieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...

Stellenwerttafel Subtraktion.png

Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:

  • Die Subtraktion ohne Übertrag
  • Die Subtraktion mit Übertrag


Die Subtraktion ohne Übertrag

Du beginnst mit der Subtraktion rechts. Die untere Zahl wird dabei zur oberen Zahl ergänzt.

Beispiel:

Subtraktion ohne Übertrag.png










Die Subtraktion mit Übertrag

Du beginnst wieder rechts mit der Subtraktion.

Beispiel:

Subtraktion mit Übertrag.png

Fachbegriffe und Rechengesetze

Icon-pencil-9576.svg
Aufgabe 6: Fachbegriffe zur Addition und Subtraktion **

Icon-Pinnnadel.svg
Merksatz zu Fachbegriffen

Addition

Grundbegriffe der Addition.png








Subtraktion

Subtraktio.png
Icon-pencil-9576.svg
Aufgabe 7: Die Rechengesetze **
GeoGebra
Icon-Pinnnadel.svg
Merksatz Vertauschungsgesetz (Kommutativgesetz)

Hervorhebung2

Icon-Pinnnadel.svg
Merksatz Verbindungsgesetz (Assoziativgesetz)

Hervorhebung2

Gemischte Aufgaben

Textaufgaben

Check-Logo.png
Tipp Verfahren bei Textaufgaben
Suche bei Anwendungsaufgaben nach Signalwörtern. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.
Check-Logo.png
Tipp Signalwärter

Diese Signalwörter sagen dir, dass du subtrahierst:

  • vermindert
  • weniger
  • Abnahme
  • wegnehmen
  • verringern
  • abziehen

Diese Signalwörter sagen dir, dass du addierst:

  • vermehrt
  • mehr
  • Zuwachs
  • dazu
  • hinzufügen

Waffelverkauf

Icon-pencil-9576.svg
Waffelverkauf **
Waffelverkauf.png
Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient. Für ihr Sommerfest gibt die Klasse 80 € für Getränke und Essen aus. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?
Check-Logo.png
Lösung

Rechnung: 120 + 48 - 80 = 168 - 80 = 88

Die 6b hat nach dem Sommerfest 88 € in der Klassenklasse.

Laufen

Icon-pencil-9576.svg
Laufen **
Laufen.png
Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, am Mittwoch 3 km, aber am Freitag nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?
Check-Logo.png
Hinweis: Rechnen mit Einheiten & Lösung
Wenn in einer Aufgabe Zahlen mit verschiedenen Einheiten vorkommen, wandelst du die Einheiten so um, dass du nur noch eine Einheit hast. Dann kannst du wie gewohnt rechnen.

Rechnung: 2 km + 3 km + 800 m = 2000 m + 3000 m + 800 m = 5800 m

Aysen ist insgesamt 5800 m gelaufen.

Bonusaufgabe zum Knobeln

Icon-pencil-9576.svg
***