Benutzer:Stoll-Gym10Erfurt/Mathematik10/Exponentialfunktionen/Exponentialgleichungen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 64: Zeile 64:
{{Lösung versteckt|1= <math> ln(0,7) = ln(0,882^x)</math>|2=2. Schritt|3=schließen}}
{{Lösung versteckt|1= <math> ln(0,7) = ln(0,882^x)</math>|2=2. Schritt|3=schließen}}
{{Lösung versteckt|1= <math> ln(0,7) = x \cdot ln(0,882)</math>|2=3. Schritt|3=schließen}}
{{Lösung versteckt|1= <math> ln(0,7) = x \cdot ln(0,882)</math>|2=3. Schritt|3=schließen}}
{{Lösung versteckt|1= <math> x = \frac {ln(0,7)}{ln(0,882)} </math>|2=3. Schritt|3=schließen}}
{{Lösung versteckt|1= <math> x = \frac {ln(0,7)}{ln(0,882)} </math>|2=4. Schritt|3=schließen}}
{{Lösung versteckt|1=<math>x \approx 2,84</math>}}
{{Lösung versteckt|1=<math>x \approx 2,84</math>}}
|3=Üben}}<br/>
|3=Üben}}<br/>

Version vom 29. Dezember 2023, 16:31 Uhr

Merke

Jede Exponentialgleichung der Gestalt mit
hat in der Menge der reellen Zahlen genau eine Lösung. Diese Lösung nennt man Logarithmus von b zur Basis a .

Videos

    Video 1

Exponentialgleichungen mit dem Logarithmus lösen



    Video 2

Exponentialgleichungen mit dem Logarithmus lösen
Dieses Video ist etwas länger, enthält aber sehr schöne allgemeine Erklärungen.


Mit dem CAS geht das Lösen natürlich auch mit dem SOLVE-Befehl.



    Video 3

Exponentielles Wachstum betrachten
Dieses Video ist etwas länger, enthält aber sehr schöne allgemeine Erklärungen.



Übungen

Übung 1


Übung 2


Aufgaben

Löse folgende Gleichung.



Löse folgende Gleichung.