Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Quadratische Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 67: | Zeile 67: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box| 4. Aus dem Graphen eine quadratische Funktion in Scheitelpunktform aufstellen| | <nowiki>{{Box| 4. Aus dem Graphen eine quadratische Funktion in Scheitelpunktform aufstellen|</nowiki> | ||
Stell die zugehörigen Funktionsgleichungen in Scheitelpunktsform auf. Wähle im Anschluss die richtige Lösung aus. | Stell die zugehörigen Funktionsgleichungen in Scheitelpunktsform auf. Wähle im Anschluss die richtige Lösung aus. | ||
Zeile 92: | Zeile 92: | ||
'''Möglichkeit 2:''' Alternativ kannst du den Parameter <math>a</math> auch direkt aus dem Graphen ablesen: Gehst du vom Scheitelpunkt aus um eine Einheit nach rechts, so entspricht <math>a</math> der Anzahl an Einheiten, die du nach oben (positives Vorzeichen) oder nach unten (negatives Vorzeichen) gehen musst, bis du wieder auf dem Graphen bist.| 2=Tipp 4 | 3=schließen}} | '''Möglichkeit 2:''' Alternativ kannst du den Parameter <math>a</math> auch direkt aus dem Graphen ablesen: Gehst du vom Scheitelpunkt aus um eine Einheit nach rechts, so entspricht <math>a</math> der Anzahl an Einheiten, die du nach oben (positives Vorzeichen) oder nach unten (negatives Vorzeichen) gehen musst, bis du wieder auf dem Graphen bist.| 2=Tipp 4 | 3=schließen}} | ||
|Arbeitsmethode}} | |||
{{Box| 5. Anwendungsaufgabe für Zwischendurch: Flugbahn eines Steins|Jonas wirft einen Stein vom Ufer in einen See. Die Flugbahn des Steins lässt sich mit der quadratischen Funktion <math>-\frac{1}{10}\cdot(x-1)^2+\frac{5}{2}</math> beschreiben. | {{Box| 5. Anwendungsaufgabe für Zwischendurch: Flugbahn eines Steins|Jonas wirft einen Stein vom Ufer in einen See. Die Flugbahn des Steins lässt sich mit der quadratischen Funktion <math>-\frac{1}{10}\cdot(x-1)^2+\frac{5}{2}</math> beschreiben. | ||
Zeile 118: | Zeile 118: | ||
{{Lösung versteckt| 1= | {{Lösung versteckt| 1= | ||
Du musst zunächst die Nullstellen der Funktion <math>g(x)</math> | Du musst zunächst die Nullstellen der Funktion <math>g(x)</math> bestimmen: | ||
<br /><br /> | <br /><br /> | ||
<math> | <math> | ||
Zeile 140: | Zeile 140: | ||
2=Lösung zu Aufgabenteil c) | 3=schließen}} | 2=Lösung zu Aufgabenteil c) | 3=schließen}} | ||
|Arbeitsmethode}} | |Arbeitsmethode}} |
Version vom 22. Mai 2019, 09:46 Uhr
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen qua dra tisch e Funktionen. Der Graph einer solchen Funktion ist eine Pa ra bel. Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt Schei tel punkt. Liegt die Funktionsgleichung in der Scheitelpunktform vor, wie es hier der Fall ist, dann kann der Scheitelpunkt S direkt aus der Funktionsgleichung abgelesen werden. Der Parameter d ist die x-Koordinate und der Parameter e ist die y-Koordinate des Scheitelpunkts. S(d,e).
Ist der Parameter a kleiner als Null (a<0), dann ist der Graph der Funktion g nach un ten geöffnet.
Ist a größer als Null (a>0), dann ist der Graph von g nach o ben geöffnet.
Ist a größer als Eins (a>1) oder kleiner als minus Eins (a<-1), dann sieht der Graph von g schma ler aus. Man sagt, dass in diesem Fall der Graph ge streckt wird.
Liegt a zwischen minus Eins und Eins (-1<a<1), dann sieht der Graph von g brei ter aus. Man sagt, dass in diesem Fall der Graph ge staucht wird.
Ist d größer als Null (d>0), dann wird der Graph von g nach rechts verschoben.
Ist d kleiner als Null (d<0), dann wird der Graph von g nach links verschoben.
Ist e kleiner als Null (e<0), dann wird der Graph von g nach un ten verschoben.
Ist e größer als Null (e>0), dann wird der Graph von g nach o ben verschoben.
{{Box| 4. Aus dem Graphen eine quadratische Funktion in Scheitelpunktform aufstellen|
Stell die zugehörigen Funktionsgleichungen in Scheitelpunktsform auf. Wähle im Anschluss die richtige Lösung aus.
Die Scheitelpunktform hat die Funktionsgleichung . Probiere aus was passiert, wenn du die Parameter und veränderst. Beobachte die Funktionsgleichung und den zugehörigen Graphen.
Um den Parameter zu bestimmen gibt es verschiedene Möglichkeiten.
Möglichkeit 1: Du kannst einen beliebigen weiteren Punkt ) aus dem Graphen ablesen und in die Funktionsgleichung einsetzen. Im Anschluss musst du nur noch die Gleichung nach auflösen. Bei Bedarf kannst Du gerne dein Heft benutzen, um dir Rechenschritte zu notieren.
|Arbeitsmethode}}
Umwandlung Scheitelpunktform und Normalform
Bisher hast du dich intensiv mit der Scheitelpunktform beschäftigt. In diesem Abschnitt wirst du auch mit der Normalform einer quadratischen Funktion arbeiten. Dafür benötigst du die ersten beiden Binomischen Formeln. In dem folgenden Merksatz sind diese dargestellt. Falls du bei den nachfolgenden Aufgaben Schwierigkeiten bei der Umwandlung der Binomischen Formeln hast, dann scroll bis zu diesem Merksatz hoch und schau ihn dir nochmal an.