Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Quadratische Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 28: | Zeile 28: | ||
<math>E=(2,-2)</math>. | <math>E=(2,-2)</math>. | ||
a) Überprüfe rechnerisch, ob die Punkte A, B, C, D und E auf dem Graphen von f liegen.<br /><br /> | '''a)''' Überprüfe rechnerisch, ob die Punkte A, B, C, D und E auf dem Graphen von f liegen.<br /><br /> | ||
b) Zeichne den Graphen der Funktion f und die Punkte A-E in dein Heft. Vergleiche anschließend die Ergebnisse aus a) mit deiner Zeichnung<br> | '''b)''' Zeichne den Graphen der Funktion f und die Punkte A-E in dein Heft. Vergleiche anschließend die Ergebnisse aus a) mit deiner Zeichnung<br> | ||
Version vom 19. Mai 2019, 11:41 Uhr
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen Funktionen. Der Graph einer solchen Funktion ist eine . Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt . Liegt die Funktionsgleichung in der Scheitelpunktform vor, wie es hier der Fall ist, dann kann der Scheitelpunkt S direkt aus der Funktionsgleichung abgelesen werden. Der Parameter d ist die -Koordinate und der Parameter e ist die -Koordinate des Scheitelpunkts. S(d,e).
Ist der Parameter a kleiner als Null (a<0), dann ist der Graph der Funktion g nach geöffnet.
Ist a größer als Null (a>0), dann ist der Graph von g nach geöffnet.
Ist a größer als Eins (a>1) oder kleiner als minus Eins (a<-1), dann sieht der Graph von g aus. Man sagt, dass in diesem Fall der Graph wird.
Liegt a zwischen minus Eins und Eins (-1<a<1), dann sieht der Graph von g aus. Man sagt, dass in diesem Fall der Graph wird.
Ist d größer als Null (d>0), dann wird der Graph von g nach verschoben.
Ist d kleiner als Null (d<0), dann wird der Graph von g nach verschoben.
Ist e kleiner als Null (e<0), dann wird der Graph von g nach verschoben.
Ist e größer als Null (e>0), dann wird der Graph von g nach verschoben.
xlinkslertentenstrecktbreischmaraunPatelundraopunktybenbenbelegequarechtstischterostauchtgeSchei
Umwandlung Scheitelpunktform und Normalenform