Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 7: | Zeile 7: | ||
===Lineare Funktionen - ein Überblick=== | ===Lineare Funktionen - ein Überblick=== | ||
{{Box|Aufgabe 1: Weißt du's noch?|Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein. | {{Box|Aufgabe 1: Weißt du's noch?|Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein. | ||
{{LearningApp|width:100%|height:1500px|app=ptvafj8jc19}}|Arbeitsmethode | {{LearningApp|width:100%|height:1500px|app=ptvafj8jc19}} | ||
{{Lösung versteckt|1=Eine lineare Funktion hat bei der Variablen x maximal den Exponenten 1.|2=Erklärung zur 1. Frage|3=Erklärung zur 1. Frage}} | |||
{{Lösung versteckt|1=Der Graph einer linearen Funktion ist immer eine Gerade, da der Exponent von x maximal 1 ist.|2=Erklärung zur 2. Frage|3=Erklärung zur 2. Frage}} | |||
{{Lösung versteckt|1=Dies gilt generell für Funktionen, da die Funktion immer eine Rechenvorschrift für Zahlen angibt und setzt man für die Variable x eine bestimmte Zahl ein so erhält man eine Rechnung aus festen Zahlen und diese hat nur ein Ergebnis (Es kann zum Beispiel nicht gelten, dass <math> 3+4=7 </math> ist, aber auch <math> 3+4=8 </math>) Sonst wäre als Graph auch ein Kreis denkbar.|2=Erklärung zur 3. Frage|3=Erklärung zur 3. Frage}} | |||
{{Lösung versteckt|1=Da der Graph linearer Funktionen immer eine Gerade ist, steigt dieser durchgehend, oder er fällt oder er ist konstant, aber nicht mehr als eines davon. Somit kann der Graph wenn er einmal einen y-Wert angenommen hat nicht wieder dahin zurück, da er wenn er zum Beispiel steigt dafür wieder fallen müsste.|2=Erklärung zur 4. Frage|3=Erklärung zur 4. Frage}} | |||
{{Lösung versteckt|1=Der y-Achsenabschnitt ist der Punkt an dem der Graph der Funktion die y-Achse schneidet. Hier ist <math> x=0 </math>. Da m mit x multipliziert wird, wird dieser Ausdruck 0 und es bleibt nur b.|2=Erklärung zur 5. Frage|3=Erklärung zur 5. Frage}}{{Lösung versteckt|1=Eine lineare Funktion hat bei der Variablen x maximal den Exponenten 1.|2=Erklärung zur 1. Frage|3=Erklärung zur 1. Frage}}|Arbeitsmethode | |||
}} | }} | ||
{{Box|Was du schon gelernt hast!||Merksatz}} | {{Box|Was du schon gelernt hast!||Merksatz}} |
Version vom 15. Mai 2019, 10:52 Uhr
Lineare Funktionen - ein Überblick
- Eine lineare Funktion ist eine Gerade, sie hat keine Kurven.
- Auch eine Funktion mit nur einer Zahl (eine sogenannte Konstante) ist eine Gerade und demnach eine lineare Funktion.
- Grundsätzlich wird einem x-Wert immer nur ein y-Wert zugeordnet.
- Bei linearen Funktionen kann ein y-Wert immer nur von einem x-Wert getroffen werden, außer die Funktion ist eine Konstante. Dies ist bei anderen Funktionenarten nicht so!
- Der y-Achsenabschnitt ist bei linearen Funktionen immer der Wert ohne das x.
- Den x-Achsenabschnitt (die Nullstelle) berechnet man, indem man die Funktion gleich 0 setzt.
- Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt, um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht.
- Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen.
Lineare Funktionen erkennen
Lineare Funktionen - Bestimmung der Geradengleichung
Bestimme die Steigung der Geraden mithilfe der Punkte und , indem du rechnest: . Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten und des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks.
Alternativ kannst du auch zwei Gleichungen erstellen, indem du die Angaben der Punkte , d.h. und , und , d.h. und nutzt.Wenn du nach der ersten Variante vorgegangen bist, also die Steigung berechnet hast, dann wähle nun einen der beiden Punkte oder und setze in die zugehörigen Werte für und ein.
Wenn du nach der zweiten Variante vorgegangen bist, also zwei Gleichungen, jeweils mit den Unbekannten und aufgestellt hast, dann hast du ein lineares Gleichungssystem erhalten. Nun kannst du mithilfe des Eliminationsverfahrens zunächst die eine und dann die andere Unbekannte bestimmen.Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung und dann mithilfe eines der beiden Punkte bestimmen möchtest, dann ergibt sich zunächst für die Steigung: . Im Anschluss erhältst du durch Einsetzen des Punktes oder entweder oder . Die Auflösung einer der beiden Gleichungen nach liefert , sodass du schließlich die Funktionsgleichung erhältst.
Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte und ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten und auf. Dann erhältst du die beiden Gleichungen und . Ziehe nun die Gleichungen voneinander ab, sodass du eliminieren kannst. Bestimme nun mithilfe der Auflösung nach die Unbekannte . Setze nun ein eine der beiden Gleichungen dein Ergebnis für ein und bestimme dann mithilfe der Auflösung nach die Unbekannte . Damit erhältst du schließlich die Funktionsgleichung .Prüfen, ob Punkte auf einer Geraden liegen
Nun setzen wir in dieselbe Funktion noch den Punkt ein. Es ergibt sich: . Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7, der Punkt liegt also nicht auf dem Graphen.
Für die anderen Punkte und Funktionen geht man genauso vor und erhält:
Auf dem Graphen der Funktion liegen die Punkte: ,,.
Auf dem Graphen der Funktion liegen die Punkte: ,,,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegt der Punkt: .
Eine lineare Gleichung einer Geraden zuordnen
Den Schnittpunkt zweier Geraden bestimmen
Lineare Funktionen im Anwendungskontext
a) Stelle eine Funktionsvorschrift für Isoldes Entfernung von zu Hause und eine Funktionsvorschrift für die Entfernung der Mutter von zu Hause in Abhängigkeit von der Zeit auf.
Isolde ist zu Beginn 11km, also 1100m von zu Hause entfernt. Der y-Achsenabschnitt von f ist demnach a=1100. Isolde legt pro Minute 75m zurück. Dabei entfernt sie sich nicht von zu Hause, sondern nähert sich. Die Steigung b ist deshalb negativ und beträgt -75. Insgesamt ergibt sich die Vorschrift .
Die Mutter startet zu Hause, der y-Achsenabschnitt d von g(x) ist also gleich 0. Sie fährt mit einer Geschwindigkeit von 72km/h, was 1200m pro Minute entspricht. Damit entfernt sie sich von zu Hause, die Steigung d ist deshalb positiv und beträgt 1200. Insgesamt ergibt sich die Vorschrift .
b) Berechne, wie lange es dauert, bis die beiden sich treffen.
Wir setzen die Funktionsvorschriften gleich, um den x-Wert des Schnittpunktes zu bestimmen.
.