Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Quadratische Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 272: | Zeile 272: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Wir müssen für <math>j(x)= | Wir müssen für <math>j(x)=0.5</math> die zugehörigen x-Werte berechnen. Dafür setzen wir <math>0.5</math> für <math>j(x)</math> ein und bringen als erstes alle Summanden auf eine Seite.<br /> | ||
<math> 0.5 = -0.0075 \cdot x^2 + 1.2 \cdot x + 1 \mid -0.5 | <math> | ||
\begin{array}{rlll} | |||
0.5 &=& -0.0075 \cdot x^2 + 1.2 \cdot x + 1 \mid -0.5 \\ | |||
\Leftrightarrow 0&=&-0.0075 \cdot x^2 + 1.2 \cdot x +0.5 | |||
\end{array} | |||
</math> | |||
Als nächstes eliminieren wir den Vorfaktor vor <math>x^2.</math><br /> | Als nächstes eliminieren wir den Vorfaktor vor <math>x^2.</math><br /> | ||
Zeile 294: | Zeile 298: | ||
</math><br /> | </math><br /> | ||
<math> \Rightarrow x_1 = 80+80.42 = 160.42 </math> und <math> x_2 = 80-80.42 = -0.42 </math><br /> | <math> \Rightarrow x_1 = 80+80.42 = 160.42 </math> und <math> x_2 = 80-80.42 = -0.42 </math><br /> | ||
Der Baseball hat nach ungefähr <math>160.42</math> Metern eine Flughöhe von 0 | Der Baseball hat nach ungefähr <math>160.42</math> Metern eine Flughöhe von 0,5 Metern. |Lösung Zusatzaufgabe |schließen}} | ||
|Arbeitsmethode}} | |Arbeitsmethode}} |
Version vom 13. Mai 2019, 10:24 Uhr
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen qua dra tisch e Funktionen. Der Graph einer solchen Funktion ist eine Pa ra bel. Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt Schei tel punkt. Liegt die Funktionsgleichung in der Scheitelpunktform vor, wie es hier der Fall ist, dann kann der Scheitelpunkt S direkt aus der Funktionsgleichung abgelesen werden. Der Parameter d ist die x-Koordinate und der Parameter e ist die y-Koordinate des Scheitelpunkts. S(d|e).
Ist der Parameter a kleiner als Null (a<0), dann ist der Graph der Funktion g nach un ten geöffnet.
Ist a größer als Null (a>0), dann ist der Graph von g nach o ben geöffnet.
Ist a größer als Eins (a>1) oder kleiner als minus Eins (a<-1), dann sieht der Graph von g schma ler aus. Man sagt, dass in diesem Fall der Graph ge streckt wird.
Liegt a zwischen minus Eins und Eins (-1<a<1), dann sieht der Graph von g brei ter aus. Man sagt, dass in diesem Fall der Graph ge staucht wird.
Ist d größer als Null (d>0), dann wird der Graph von g nach rechts verschoben.
Ist d kleiner als Null (d<0), dann wird der Graph von g nach links verschoben.
Ist e kleiner als Null (e<0), dann wird der Graph von g nach un ten verschoben.
Ist e größer als Null (e>0), dann wird der Graph von g nach o ben verschoben.
Umwandlung Scheitelpunktform und Normalenform