Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Lineare Funktionen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 26: Zeile 26:
{{Lösung versteckt|1=Überlege dir, welchen maximalen Exponent lineare Funktionen haben|2=Tipp 2-Erkennen der linearen Funktionsgleichungen|3=Tipp 2-Erkennen der linearen Funktionsgleichungen}}
{{Lösung versteckt|1=Überlege dir, welchen maximalen Exponent lineare Funktionen haben|2=Tipp 2-Erkennen der linearen Funktionsgleichungen|3=Tipp 2-Erkennen der linearen Funktionsgleichungen}}
{{Lösung versteckt|1=Überlege dir, ob ein x-Wert von einer Funktion mehrmals angenommen werden darf|2=Tipp 3-Ist es eine Funktion oder nicht|3=Tipp 3-Ist es eine Funktion oder nicht}}
{{Lösung versteckt|1=Überlege dir, ob ein x-Wert von einer Funktion mehrmals angenommen werden darf|2=Tipp 3-Ist es eine Funktion oder nicht|3=Tipp 3-Ist es eine Funktion oder nicht}}
{{Lösung versteckt|1=Keine Funktion: Der Kreis und Gerade parallel zur y-Achse, sowie die Gleichungen die einem x durchgehend denselben Wert zuordnen. Bei all diesen werden x-Werte mehrmals getroffen, was bei einer Funktion nicht sein darf. Lineare Funktion: Alle Geraden, die nicht parallel zur y-Achse verlaufen. Alle Funktionen, die maximal den Exponent 1 haben.|2 = Lösung|3= Lösung}}
{{Lösung versteckt|1=Keine Funktion: Der Kreis und Gerade parallel zur y-Achse, sowie die Gleichungen die einem x durchgehend denselben Wert zuordnen. Bei all diesen werden x-Werte mehrmals getroffen, was bei einer Funktion nicht sein darf. Lineare Funktion: Alle Geraden, die nicht parallel zur y-Achse verlaufen. Alle Funktionen, die maximal den Exponent 1 haben.|2 = Lösung|3= Lösung}}<br />
 
===Lineare Funktionen - Bestimmung der Geradengleichung===
 
{{Box|Aufgabe 3: Wie lautet die Gleichung der Geraden?*|Gegeben sei die Steigung der Geraden <math>m = 3,5</math>. Außerdem verlaufe die Gerade durch den Punkt <math>P(2/5)</math>. Bestimme in deinem Heft die Gleichung der Geraden in der Form <math>f(x) = mx + b</math> und klicke dann auf das entsprechende Ergebnis.|Arbeitsmethode}}
 
{{LearningApp|width:100%|height:500px|app=p0cp6e2a319}}
 
<!-- <iframe src="https://learningapps.org/watch?v=p0cp6e2a319" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> -->
 
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}}
 
{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = 3,5</math>, sodass dein erstes Gerüst <math>f(x) = 3,5x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(2/5)</math>, sodass du mit <math>x = 2</math> und <math>f(x) = 5</math> die Gleichung <math>5 = 3,5*2 + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = -2</math>, sodass sich schließlich die Geradengleichung <math>f(x) = 3,5x - 2</math> ergibt.|2 = Lösung|3 = Lösung}}
 
{{Box|Aufgabe 4: Finde die gesuchte Geradengleichung!*|Bestimme in deinem Heft die Gleichung der Geraden, welche durch die Punkte <math>P(3/-4)</math> und <math>Q(8/6)</math> verläuft, in der Form <math>f(x) = mx + b</math> und klicke dann auf das entsprechende Ergebnis.|Arbeitsmethode}}
 
{{LearningApp|width:100%|height:500px|app=pn2ojfrp319}}
 
<!-- <iframe src="https://learningapps.org/watch?v=pn2ojfrp319" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> -->
 
{{Lösung versteckt|1=Bestimme die Steigung der Geraden mithilfe der Punkte <math>P</math> und <math>Q</math>, indem du rechnest: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten <math>P</math> und <math>Q</math> des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks.
 
Alternativ kannst du auch zwei Gleichungen erstellen, indem du die Angaben der Punkte <math>P(3/-4)</math>, d.h. <math>x = 3</math> und <math>f(x) = -3</math>, und <math>Q(8/6)</math>, d.h. <math>x = 8</math> und <math>f(x) = 6</math> nutzt.|2=Tipp 1|3=Tipp 1}}
 
{{Lösung versteckt|1=Wenn du nach der ersten Variante vorgegangen bist, also die Steigung berechnet hast, dann wähle nun einen der beiden Punkte <math>P</math> oder <math>Q</math> und setze in <math>f(x) = 2x + b</math> die zugehörigen Werte für <math>x</math> und <math>f(x)</math> ein.
 
Wenn du nach der zweiten Variante vorgegangen bist, also zwei Gleichungen, jeweils mit den Unbekannten <math>m</math> und <math>b</math> aufgestellt hast, dann hast du ein lineares Gleichungssystem erhalten. Nun kannst du mithilfe des Eliminationsverfahrens zunächst die eine und dann die andere Unbekannte bestimmen.|2=Tipp 2|3=Tipp 2}}
 
{{Lösung versteckt|1 = Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math>-4 = 2 * 3 + b</math> oder <math>6 = 2 * 8 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = -10</math>, sodass du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math> erhältst.
 
Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte <math>P</math> und <math>Q</math> ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten <math>m</math> und <math>b</math> auf. Dann erhältst du die beiden Gleichungen <math>-4 = m * 3 + b</math> und <math>6 = m * 8 + b</math>. Ziehe nun die Gleichungen voneinander ab, sodass du <math>b</math> eliminieren kannst. Bestimme nun mithilfe der Auflösung nach <math>m</math> die Unbekannte <math>m = 2</math>. Setze nun ein eine der beiden Gleichungen dein Ergebnis für <math>m</math> ein und bestimme dann mithilfe der Auflösung nach <math>b</math> die Unbekannte <math>b = -10</math>. Damit erhältst du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math>.|2 = Lösung|3 = Lösung}}


===Prüfen, ob Punkte auf einer Geraden liegen===
===Prüfen, ob Punkte auf einer Geraden liegen===

Version vom 13. Mai 2019, 07:02 Uhr

Info
In diesem Lernpfad kannst du dein Wissen über lineare Funktionen vertiefen und anwenden. Das Kapitel behandelt die Zusammenhänge zwischen linearen Funktionen, ihren Funktionsgleichungen, ihren Funktionsgraphen und darauf liegenden Punkten. Es beginnt mit einem Quiz zur Wiederholung und endet mit einer fordernden Anwendungsaufgabe.

Lineare Funktionen - ein Überblick

Aufgabe 1: Nice to know!
Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein.


Was du schon gelernt hast!
  1. Eine lineare Funktion ist eine Gerade, sie hat keine Kurven.
  2. Auch eine Funktion mit nur einer Zahl (eine sogenannte Konstante) ist eine Gerade und demnach eine lineare Funktion.
  3. Grundsätzlich wird einem x-Wert immer nur ein y-Wert zugeordnet.
  4. Bei linearen Funktionen kann ein y-Wert immer nur von einem x-Wert getroffen werden, außer die Funktion ist eine Konstante. Dies ist bei anderen Funktionenarten nicht so!
  5. Der y-Achsenabschnitt ist bei linearen Funktionen immer der Wert ohne das x.
  6. Den x-Achsenabschnitt (die Nullstelle) berechnet man, indem man die Funktion gleich 0 setzt.
  7. Die Steigung ist der Vorfaktor vom x. Die Steigung beschreibt, um wie viel der y-Wert nach oben (unten bei negativen Vorzeichen) verschoben werden muss, wenn man den x-Wert um einen erhöht.
  8. Den Schnittpunkt zweier Funktionen erhält man durch Gleichsetzten die beiden Funktionsgleichungen.

Lineare Funktionen erkennen

Aufgabe 2: Erkennst du sie?
Überlege, ob die folgenden Funktionsgleichungen und Graphen lineare Funktionen sind und ordne sie dem entsprechenden Feld zu.

Überlege dir, welche geometrischen Form der Graph von lineare Funktionen hat
Überlege dir, welchen maximalen Exponent lineare Funktionen haben
Überlege dir, ob ein x-Wert von einer Funktion mehrmals angenommen werden darf
Keine Funktion: Der Kreis und Gerade parallel zur y-Achse, sowie die Gleichungen die einem x durchgehend denselben Wert zuordnen. Bei all diesen werden x-Werte mehrmals getroffen, was bei einer Funktion nicht sein darf. Lineare Funktion: Alle Geraden, die nicht parallel zur y-Achse verlaufen. Alle Funktionen, die maximal den Exponent 1 haben.


Lineare Funktionen - Bestimmung der Geradengleichung

Aufgabe 3: Wie lautet die Gleichung der Geraden?*
Gegeben sei die Steigung der Geraden . Außerdem verlaufe die Gerade durch den Punkt . Bestimme in deinem Heft die Gleichung der Geraden in der Form und klicke dann auf das entsprechende Ergebnis.



Setze die gegebenen Informationen in die Geradengleichung der Form ein.
Setze zunächst für die Steigung , sodass dein erstes Gerüst entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes , sodass du mit und die Gleichung erhältst. Bestimme nun mit Auflösung nach den Wert , sodass sich schließlich die Geradengleichung ergibt.


Aufgabe 4: Finde die gesuchte Geradengleichung!*
Bestimme in deinem Heft die Gleichung der Geraden, welche durch die Punkte und verläuft, in der Form und klicke dann auf das entsprechende Ergebnis.



Bestimme die Steigung der Geraden mithilfe der Punkte und , indem du rechnest: . Wenn du Schwierigkeiten dabei hast, dir dieses Vorgehen zu erklären, stell dir vor, dass du an den Punkten und des Graphen ein Steigungsdreieck zeichnest. Dann entspricht der Zähler der obigen Rechnung genau der Länge des y-Achsenabschnitts deines Steigungsdreiecks und der Nenner der obigen Rechnung der Länge des x-Achsenabschnitts deines Steigungsdreiecks.

Alternativ kannst du auch zwei Gleichungen erstellen, indem du die Angaben der Punkte , d.h. und , und , d.h. und nutzt.

Wenn du nach der ersten Variante vorgegangen bist, also die Steigung berechnet hast, dann wähle nun einen der beiden Punkte oder und setze in die zugehörigen Werte für und ein.

Wenn du nach der zweiten Variante vorgegangen bist, also zwei Gleichungen, jeweils mit den Unbekannten und aufgestellt hast, dann hast du ein lineares Gleichungssystem erhalten. Nun kannst du mithilfe des Eliminationsverfahrens zunächst die eine und dann die andere Unbekannte bestimmen.

Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung und dann mithilfe eines der beiden Punkte bestimmen möchtest, dann ergibt sich zunächst für die Steigung: . Im Anschluss erhältst du durch Einsetzen des Punktes oder entweder oder . Die Auflösung einer der beiden Gleichungen nach liefert , sodass du schließlich die Funktionsgleichung erhältst.

Wenn du nach der zweiten Variante vorgehen möchtest, stellst du mithilfe der beiden Punkte und ein lineares Gleichungssystem zweier Gleichungen, jeweils mit den beiden Unbekannten und auf. Dann erhältst du die beiden Gleichungen und . Ziehe nun die Gleichungen voneinander ab, sodass du eliminieren kannst. Bestimme nun mithilfe der Auflösung nach die Unbekannte . Setze nun ein eine der beiden Gleichungen dein Ergebnis für ein und bestimme dann mithilfe der Auflösung nach die Unbekannte . Damit erhältst du schließlich die Funktionsgleichung .

Prüfen, ob Punkte auf einer Geraden liegen

Aufgabe 5: Prüfe für die angegebenen linearen Funktionen, welche Punkte auf dem Funktionsgraphen liegen.
Ordne jeder Funktion durch Anklicken die Punkte zu, die auf ihrem Graphen liegen.



Setze die Punkte in die Funktionsgleichungen ein.
Jeder Punkt liegt auf dem Graphen genau einer der Funktionen.
Beginne mit Punkten, die du leichter zuordnen kannst und gehe nach dem Ausschlussverfahren vor.
Wir setzen beispielhaft den Punkt in die Funktion ein. Dann ergibt sich: . Der Punkt liegt also auf dem Graphen der Funktion.
Nun setzen wir in dieselbe Funktion noch den Punkt ein. Es ergibt sich: . Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7, der Punkt liegt also nicht auf dem Graphen.
Für die anderen Punkte und Funktionen geht man genauso vor und erhält:
Auf dem Graphen der Funktion liegen die Punkte: ,,.
Auf dem Graphen der Funktion liegen die Punkte: ,,,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegen die Punkte: ,.
Auf dem Graphen der Funktion liegt der Punkt: .

Eine lineare Gleichung einer Geraden zuordnen

Aufgabe 6: Finde Paare*
Ordne den gegebenen linearen Gleichungen die zugehörige Gerade zu. Beachte: Nicht zu jeder Gleichung ist eine Gerade gegeben.

Überlege, was der jeweilige y-Achsenabschnitt ist.
Nicht vergessen: Für f(x) = mx + n ist n der y-Achsenabschnitt, also die Stelle, an der die Gerade die y-Achse schneidet.
Überlege, ob die Steigung positiv oder negativ ist und wie stark die Steigung ist.
Nicht vergessen: Für f(x) = mx + n ist m die Steigung der Geraden.


Den Schnittpunkt zweier Geraden bestimmen

Aufgabe 7: Bestimme den Schnittpunkt
Berechne zunächst den Schnittpunkt der beiden Geraden und kreuze dann die richtige Antwort an.

Der Schnittpunkt der Geraden ist der Punkt, an dem die Geraden gleich sind.
Setzte die beiden Geraden gleich und löse dann nach x auf.

Lineare Funktionen im Anwendungskontext

Aufgabe 8: Textaufgabe**
Nach der Schule verpasst Isolde den Bus und müsste nun den Weg von 11km nach Hause laufen. Sie ruft ihre Mutter an und bittet sie, sie abzuholen. Ihre Mutter fährt ihr auf der Landstraße mit 72 km/h entgegen. Isolde geht in ihre Richtung und geht dabei 75m pro Minute.

a) Stelle eine Funktionsvorschrift für Isoldes Entfernung von zu Hause und eine Funktionsvorschrift für die Entfernung der Mutter von zu Hause in Abhängigkeit von der Zeit auf.

Bestimme mithilfe der angegebenen Geschwindigkeiten die Steigungen der Funktionen. Achte dabei darauf, dass die Funktionen die Entfernung in der gleichen Einheit angeben und auch für die Zeit beide die gleiche Einheit verwenden sollten. Das erleichtert das spätere Rechnen mit den Funktionen.
Wie weit sind beide zu Beginn von zu Hause entfernt? Leite aus diesen Informationen die y-Achsenabschnitte der Funktionen ab.
Wir geben die Zeit in Minuten und die Entfernung in Metern an. Die Funktion soll Isoldes Entfernung von zu Hause und die Funktion die Entfernung der Mutter von zu Hause beschreiben.
Isolde ist zu Beginn 11km, also 1100m von zu Hause entfernt. Der y-Achsenabschnitt von f ist demnach a=1100. Isolde legt pro Minute 75m zurück. Dabei entfernt sie sich nicht von zu Hause, sondern nähert sich. Die Steigung b ist deshalb negativ und beträgt -75. Insgesamt ergibt sich die Vorschrift .
Die Mutter startet zu Hause, der y-Achsenabschnitt d von g(x) ist also gleich 0. Sie fährt mit einer Geschwindigkeit von 72km/h, was 1200m pro Minute entspricht. Damit entfernt sie sich von zu Hause, die Steigung d ist deshalb positiv und beträgt 1200. Insgesamt ergibt sich die Vorschrift .

b) Berechne, wie lange es dauert, bis die beiden sich treffen.

Bestimme rechnerisch den Schnittpunkt der Funktionsgraphen von f und g.
Setze die Funktionsvorschriften gleich und löse nach x auf.

Wir setzen die Funktionsvorschriften gleich, um den x-Wert des Schnittpunktes zu bestimmen.
.

Es dauert ungefähr 0,86 Minuten, bis die beiden sich treffen.