====3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen====
====3.3 Vermische Übungen zu umgekehrt proportionalen Zuordnungen====
<br />{{Box|Übung 18 - Vermischte Übungen|Umfangreiche Aufgaben zu proportionalen Zuordnungen findest du auf der Seite [https://mathe.aufgabenfuchs.de/zuordnung/umgekehrt-proportional.shtml '''Aufgabenfuchs: Umgekehrt proportionale Zuordnung'''], klicke dazu den Link an und bearbeite die Übungen.|Üben}}
<br />{{Box|Übung 18 - Vermischte Übungen|Umfangreiche Aufgaben zu umgekehrt proportionalen Zuordnungen findest du auf der Seite [https://mathe.aufgabenfuchs.de/zuordnung/umgekehrt-proportional.shtml '''Aufgabenfuchs: Umgekehrt proportionale Zuordnung'''], klicke dazu den Link an und bearbeite die Übungen.|Üben}}
{{Fortsetzung|weiter=4. Bunte Mischung - Übungen|weiterlink=Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Bunte Mischung}}
{{Fortsetzung|weiter=4. Bunte Mischung - Übungen|weiterlink=Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Bunte Mischung}}
3. Umgekehrt proportionale Zuordnungen und Dreisatz
3.1 Umgekehrt proportionale Zuordnungen erkennen
Umgekehrt proportionale Zuordnungen
Nach dem Backen muss nun aufgeräumt werden:
Für das Aufräumen der Küche benötigt eure Mathelehrerin 30 Minuten. Natürlich muss sie nicht allein aufräumen.
a) Welche Zuordnung liegt vor?
b) Stelle sie auf verschiedene Arten dar.
c) Welche Fragen kannst du an diese Zuordnung stellen?
Die Eingabegröße ist die Anzahl der Personen, die aufräumen. Zugeordnet wird dann die Zeit, die sie für das Aufräumen benötigen. Wie kannst du den Satz beenden:"Je mehr Personen helfen, desto ...
Bearbeite die folgenden Learningapps. Welche Strategien nutzt du, um zu entscheiden, ob die Zuordnungen umgekehrt proportional sind oder nicht? Diskutiere deine Ideen mit deinem Partner.
Löse die Aufgabe aus dem Buch mithilfe der Produktgleichheit.
S. 34, Nr. 12
3.2 Dreisatz bei umgekehrt proportionalen Zuordnungen
Dreisatz bei umgekehrt proportionalen Zuordnungen
Nachdem alle Kekse gegessen wurden, muss der Klassenraum gefegt werden. Wenn zwei Schüler den Klassenraum reinigen, benötigen sie 12 Minuten. Wie lange bräuchten dann 3 Schüler?
Die Zuordnung Anzahl der Schüler benötigte Zeit ist umgekehrt proportional, denn doppelt so viele Schüler benötigen nur halb so lange. Daher können wir mit drei Schritten die Zeit zum Aufräumen berechnen:
Dreisatz bei umgekehrt proportionalen Zuordnungen
Bei einer umgekehrt proportionalen Zuordnung kann die gesuchte Größe mit dem Dreisatz (3 Schritte) berechnet werden.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.