Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Gleichungen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 44: | Zeile 44: | ||
<div class="width-1-4">Einsetzungsverfahren:<br>{{#ev:youtube|oGgC7SN_Qc8|210|center}}</div> | <div class="width-1-4">Einsetzungsverfahren:<br>{{#ev:youtube|oGgC7SN_Qc8|210|center}}</div> | ||
</div> | </div> | ||
{{Box|Das Gleichsetzungsverfahren|Beim Gleichsetzungsverfahren löst man beide Gleichungen nach derselben Variablen auf. Die zugehörigen Terme werden gleichgesetzt, diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Gleichsetzungsverfahren_Schritt_für_Schritt.png|rahmenlos|884x884px]] | {{Lösung versteckt|1= | ||
{{Box|Das Gleichsetzungsverfahren|Beim Gleichsetzungsverfahren löst man beide Gleichungen nach derselben Variablen auf. Die zugehörigen Terme werden gleichgesetzt, diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Gleichsetzungsverfahren_Schritt_für_Schritt.png|rahmenlos|884x884px]]|2=Lösen mit dem Gleichsetzungsverfahren - Beispiel|3=Verbergen}} | |||
{{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Gleichsetzungsverfahren.|Üben}} | {{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Gleichsetzungsverfahren.|Üben}} | ||
{{LearningApp|app=ppnekev4j19|width=100%|height=400px}} | {{LearningApp|app=ppnekev4j19|width=100%|height=400px}} | ||
{{LearningApp|app=p215ya09t20|width=100%|height=700px}} | {{LearningApp|app=p215ya09t20|width=100%|height=700px}} | ||
{{Box|Das Additionsverfahren|Beim Additionsverfahren werden die Gleichungen so umgeformt, dass beim Addieren (bzw. Subtrahieren) eine Variable wegfällt. Diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Additionsverfahren_Schritt_für_Schritt_berichtigt_1.png|rahmenlos|884x884px]] | {{Lösung versteckt|1= | ||
{{Box|Das Additionsverfahren|Beim Additionsverfahren werden die Gleichungen so umgeformt, dass beim Addieren (bzw. Subtrahieren) eine Variable wegfällt. Diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Additionsverfahren_Schritt_für_Schritt_berichtigt_1.png|rahmenlos|884x884px]]|2=Lösen mit dem Additionsverfahren - Beispiel|3=Verbergen}} | |||
{{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Additionsverfahren.|Üben}} | {{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Additionsverfahren.|Üben}} | ||
{{LearningApp|app=prd3sae7k19|width=100%|height=600px}} | {{LearningApp|app=prd3sae7k19|width=100%|height=600px}} | ||
{{LearningApp|app=pq4gjoxzk20|width=100%|height=600px}} | {{LearningApp|app=pq4gjoxzk20|width=100%|height=600px}} | ||
{{Box|Das Einsetzungsverfahren|Beim Einsetzungsverfahren wird eine Gleichung nach einer Variablen aufgelöst. Der erhaltene Term wird dann in die andere Gleichung eingesetzt. Diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Einsetzungsverfahren_Schritt_für_Schritt.png|rahmenlos|884x884px]] | {{Lösung versteckt|1= | ||
{{Box|Das Einsetzungsverfahren|Beim Einsetzungsverfahren wird eine Gleichung nach einer Variablen aufgelöst. Der erhaltene Term wird dann in die andere Gleichung eingesetzt. Diese Gleichung hat nur noch eine Variable.|Arbeitsmethode}}[[Datei:Einsetzungsverfahren_Schritt_für_Schritt.png|rahmenlos|884x884px]]|2=Lösen mit dem Einsetzungsverfahren - Beispiel|3=Verbergen}} | |||
{{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Einsetzungsverfahren.|Üben}} | {{Box|Übung|Bearbeite die nachfolgenden LearningApps zum Einsetzungsverfahren.|Üben}} | ||
{{LearningApp|app=pcsqyrt8319|width=100%|height=600px}} | {{LearningApp|app=pcsqyrt8319|width=100%|height=600px}} | ||
Zeile 73: | Zeile 76: | ||
{{Box|1=Rein quadratische Gleichungen|2=Eine quadratische Gleichung heißt rein quadratisch, wenn die Variable ausschließlich in der zweiten Potenz vorkommt:<br> | {{Box|1=Rein quadratische Gleichungen|2=Eine quadratische Gleichung heißt rein quadratisch, wenn die Variable ausschließlich in der zweiten Potenz vorkommt:<br> | ||
'''ax² = c'''|3=Arbeitsmethode}} | '''ax² = c'''|3=Arbeitsmethode}} | ||
Zeile 85: | Zeile 87: | ||
====1.3.2) Gemischt quadratische Gleichungen lösen==== | ====1.3.2) Gemischt quadratische Gleichungen lösen==== | ||
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.<br> | Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.<br> | ||
===== Lösen durch Ausklammern: Gleichungen der Form x² + bx = 0 ===== | =====Lösen durch Ausklammern: Gleichungen der Form x² + bx = 0===== | ||
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.<br> | Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.<br> | ||
Beginnen wir mit dem besonderen Fall, dass die Gleichung die Form x² + bx = 0 hat, es also keinen Term "ohne" Variable gibt und eine Seite den Wert 0 hat. | Beginnen wir mit dem besonderen Fall, dass die Gleichung die Form x² + bx = 0 hat, es also keinen Term "ohne" Variable gibt und eine Seite den Wert 0 hat. |
Version vom 29. Dezember 2022, 12:14 Uhr
SEITE IM AUFBAU!!
Gleichungen lösen
1.1 Lineare Gleichungen lösen
1.2 Lineare Gleichungssysteme (LGS)
1.3 Quadratische Gleichungen lösen
1.3.1) Rein quadratische Gleichungen lösen
1.3.2) Gemischt quadratische Gleichungen lösen
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.
Lösen durch Ausklammern: Gleichungen der Form x² + bx = 0
Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.
Beginnen wir mit dem besonderen Fall, dass die Gleichung die Form x² + bx = 0 hat, es also keinen Term "ohne" Variable gibt und eine Seite den Wert 0 hat.
Lösen durch quadratische Ergänzung: Gleichungen der Form x² + bx + c = 0
Schau das Video zur Beispielaufgabe an. Schreibe das Beispiel in dein Heft und mache dir Notizen zu jedem Schritt der Lösung.
Lösen mit der Lösungsformel: p-q-Formel
Mit der quadratischen Ergänzung kannst du gemischt quadratische Gleichungen lösen. Eine weitere Möglichkeit ist die Anwendung der Lösungsformel: Die p-q-Formel.
Damit diese Formel angewendet werden darf, muss die gemischt quadratische Gleichung in der sogenannten Normalform gegeben sein:
x² + px + q = 0
Präge dir die Lösungsformel ein mit dem Lied von Dorfuchs. Höre es so oft, bis es ein Ohrwurm wird:
Übe zunächst das Umstellen der Gleichung ein die Normalform und die Bestimmung von p und q.
Löse die nächsten Aufgaben mit der Lösungsformel. Schreibe wie im Beispiel:
x² - 22x + 72 = 0 |Setze ein: p=-22; =-11; -=11; q=72
x1/2 = 11
x1/2 = 11
x1/2 = 11
x1/2 = 117
x1 = 18; x2 = 4
Kurzschreibweise:
x² - 22x + 72 = 0 |Setze ein: p=-22; =-11; -=11; q=72
x1/2 = 11
x1/2 = 117
x1 = 18; x2 = 4
Allgemein quadratische Gleichungen lösen
Allgemein quadratische Gleichungen sind Gleichungen in der Form ax² + bx + c = 0.
Im Unterschied zur Normalform ist hier der Koeffizient von x² eine beliebige Zahl a.
Ordne in der nachfolgenden LearningApp, ob es sich um die Normalform oder die allgemeine Form quadratischer Gleichungen handelt.
Jede quadratische Gleichung lässt sich in die Normalform x² + px + q = 0 umformen. Dann können wir wieder die p-q-Formel zur Lösung anwenden.
Übe zunächst das Umwandeln in die Normalform:
Ein Video zur Zusammenfassung:
Beispiele:
1. x² + 6x + 5 = 0 |
x1/2 = -3
x1/2 = -3 D = 4 (positiv)
x1/2 = -32
x1 = -1 ; x2 = -5
2. x² + 6x + 9 = 0 |
x1/2 = -3
x1/2 = -3 D = 0
x1/2 = -30
3. x² + 6x + 10 = 0 |
x1/2 = -3
x1/2 = -3 D < 0 (negativ)