Digitale Werkzeuge in der Schule/Pyramiden entdecken/Pyramiden kennenlernen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Aufgabe 6)
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 73: Zeile 73:


==Besondere Pyramiden?==
==Besondere Pyramiden?==
{{Box|1=Aufgabe 6: Ecken, Kanten und Flächen|2=Wir haben bereits gelernt, dass eine Pyramide verschiedene Vielecke als Grundfläche haben kann. Dadurch unterscheiden sich die Pyramiden in der Anzahl der Ecken, Kanten und Flächen. Wechsle für die nächste Aufgabe zu deinem Arbeitsblatt und bearbeite Aufgabe 6: Ecken, Kanten und Flächen.
<nowiki>{{Box|1=Aufgabe 6: Ecken, Kanten und Flächen|2=Wir haben bereits gelernt, dass eine Pyramide verschiedene Vielecke als Grundfläche haben kann. Dadurch unterscheiden sich die Pyramiden in der Anzahl der Ecken, Kanten und Flächen. Wechsle für die nächste Aufgabe zu deinem Arbeitsblatt und bearbeite Aufgabe 6: Ecken, Kanten und Flächen.</nowiki>
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' {{Lösung versteckt|1=Hier siehst du eine Pyramide mit einem Dreieck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung. [[Datei:Dreieck zuschnitt.png|mini|Pyramide mit Dreieck als Grundfläche]] |2=Tipp zu a)|3=Tipp zu a)}}
[[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' {{Lösung versteckt|1=Hier siehst du eine Pyramide mit einem Dreieck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung. [[Datei:Dreieck zuschnitt.png|mini|Pyramide mit Dreieck als Grundfläche]] |2=Tipp zu a)|3=Tipp zu a)}}


Zeile 87: Zeile 87:
Die Pyramide hat eine Grundfläche und 4 Seitenflächen. Insgesamt hat die Pyramide somit '''5 Flächen'''.|2=Lösung zu b)|3=Lösung zu b)}}
Die Pyramide hat eine Grundfläche und 4 Seitenflächen. Insgesamt hat die Pyramide somit '''5 Flächen'''.|2=Lösung zu b)|3=Lösung zu b)}}


{{Lösung versteckt|1=Hier siehst du eine Pyramide mit einem Sechseck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung. [[Datei:sechseck zuschnitt.png|mini|Pyramide mit Achteck als Grundfläche]]|2=Tipp zu c)|3=Tipp zu c)}}
{{Lösung versteckt|1=Hier siehst du eine Pyramide mit einem Sechseck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung. [[Datei:Pyramide mit Sechseck als Grundfläche.png|mini|Pyramide mit Sechseck als Grundfläche]]|2=Tipp zu c)|3=Tipp zu c)}}
{{Lösung versteckt|1=Die Grundfläche der Pyramide hat 6 Ecken. Hinzu kommt die Ecke der Spitze. Insgesamt hat die Pyramide somit '''7 Ecken'''.  
{{Lösung versteckt|1=Die Grundfläche der Pyramide hat 6 Ecken. Hinzu kommt die Ecke der Spitze. Insgesamt hat die Pyramide somit '''7 Ecken'''.  
Die Grundfläche der Pyramide hat 6 Kanten. Dazu kommen 6 Seitenkanten, also insgesamt '''12 Kanten'''.
Die Grundfläche der Pyramide hat 6 Kanten. Dazu kommen 6 Seitenkanten, also insgesamt '''12 Kanten'''.

Version vom 19. November 2022, 13:05 Uhr


Info

In diesem Lernpfadkapitel widmen wir uns dem mathematischen Körper der Pyramide.

In diesem Kapitel lernst du, ...

... wie du Pyramiden von anderen Körpern abgrenzt.

... wo Pyramiden in deinem Alltag überall auftauchen können.

... wie du eine Pyramide charakterisierst.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!

Körper

Als Start in die Welt der Pyramiden wiederholen wir noch einmal ein paar andere Körper, die du schon aus dem Mathematikunterricht kennst.


Aufgabe 1: Wiederholung der verschiedenen Körper

Ordne den verschiedenen Körpern ihre Namen zu.


Pyramiden im Alltag

Jetzt konzentrieren wir uns aber auf unser heutiges Thema, die Pyramiden. Zum Start überlegen wir, wo Pyramiden in unserem Alltag auftauchen können.


Aufgabe 2: Pyramiden im Alltag

Überlege kurz für dich alleine, wo dir Pyramiden überall begegnen können. Trage deine Ideen dazu auf dem Arbeitsblatt ein.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Denkt mal an einen Ausflug in die Stadt. Fallen euch Orte oder bestimmte Gebäude, wie z. B. Kirchen, ein, an denen ihr schon einmal eine Pyramidenform gesehen habt? Oder kennt ihr Lebensmittel, die in Pyramidenform verpackt werden?

Schaue dir die folgenden Bilder von Pyramiden im Alltag an. Vielleicht kommen dir einige davon ja bekannt vor.

Louvre Museum Wikimedia Commons.jpg
Pyramids in Giza - Egypt.jpg
St Thekla - Mausheim 002.JPG
Yeonnip-cha tea bag.jpg
Pyramiden können uns in vielen Situationen begegnen. Hier ist eine Aufzählung von einigen Lösungsbeispielen. Du musst aber gar nicht alle kennen oder aufgeschrieben haben! Pyramiden findest du zum Beispiel: als Dächer von Häusern oder Kirchtürmen; als Zeltdach; als Teebeutel; als Gummibärchentüte; als Bergspitze; am Louvre in Paris; in Ägypten, z. B. die berühmten Cheops-Pyramiden; als Schmuck

Pyramide oder keine Pyramide?

Nun haben wir schon einen ersten Eindruck gewonnen, wie Pyramiden in der echten Welt aussehen können.Im folgenden Schritt wollen wir uns mathematischen Besonderheiten des Körpers Pyramide nähern.


Aufgabe 3 a): Pyramiden-Swipen

Ordne die angezeigten Körper den Kategorien "Pyramide" und "Keine Pyramide" zu und überprüfe anschließend deine Antworten.


Aufgabe 3 b): Pyramide erklären

Wie würdest du einer Mitschülerin oder einem Mitschüler erklären, was eine Pyramide ist? Schreibe deine Antwort in den dafür vorgesehenen Kasten auf dem Arbeitsblatt.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Was sind markannte Eigenschaften von Pyramiden, die sie von anderen Körpern unterscheiden?
Vergleiche die Bilder aus der vorherigen Aufgabe 3 a). Welche Gemeinsamkeiten haben die Körper der Kategorie "Pyramide"? Was unterscheidet diese von den Körpern der Kategorie "Keine Pyramide"?


Wie sieht eine Pyramide aus?

Wir wollen uns nun Pyramiden genauer anschauen und die wichtigsten Begriffe erlernen.


Aufgabe 4: Begriffe zuordnen

Tippe auf die Markierungen und ordne den Elementen der Pyramide die richtigen Begriffe zu.


Im nächsten Schritt erarbeiten wir die Definition einer Pyramide.


Aufgabe 5 a): Definition einer Pyramide

Tippe auf die leeren Kästchen und wähle den passenden Begriff für die Lücke aus.


Wenn du nicht weiter kommst, schau dir nochmal die Begriffe aus der Skizze aus Aufgabe 4 an.


Aufgabe 5 b):

Wenn du alle Wörter richtig eingesetzt hast, übertrage die richtige Lösung in den Lückentext auf deinem Arbeitsblatt.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Besondere Pyramiden?

{{Box|1=Aufgabe 6: Ecken, Kanten und Flächen|2=Wir haben bereits gelernt, dass eine Pyramide verschiedene Vielecke als Grundfläche haben kann. Dadurch unterscheiden sich die Pyramiden in der Anzahl der Ecken, Kanten und Flächen. Wechsle für die nächste Aufgabe zu deinem Arbeitsblatt und bearbeite Aufgabe 6: Ecken, Kanten und Flächen.

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt

Hier siehst du eine Pyramide mit einem Dreieck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung.
Pyramide mit Dreieck als Grundfläche

Die Grundfläche der Pyramide hat 3 Ecken. Hinzu kommt die Ecke der Spitze. Insgesamt hat die Pyramide somit 4 Ecken. Die Grundfläche der Pyramide hat 3 Kanten. Dazu kommen 3 Seitenkanten, also insgesamt 6 Kanten.

Die Pyramide hat eine Grundfläche und 3 Seitenflächen. Insgesamt hat die Pyramide also 4 Flächen.

Hier siehst du eine Pyramide mit einem Viereck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung.

Pyramide mit Viereck als Grundfläche

Die Grundfläche der Pyramide hat 4 Ecken. Hinzu kommt die Ecke der Spitze. Insgesamt hat die Pyramide somit 5 Ecken. Die Grundfläche der Pyramide hat 4 Kanten. Dazu kommen 4 Seitenkanten, also hat die Pyramide insgesamt 8 Kanten.

Die Pyramide hat eine Grundfläche und 4 Seitenflächen. Insgesamt hat die Pyramide somit 5 Flächen.
Hier siehst du eine Pyramide mit einem Sechseck als Grundfläche. Bestimme die Anzahl der Ecken, Kanten und Flächen mithilfe der Abbildung.
Datei:Pyramide mit Sechseck als Grundfläche.png
Pyramide mit Sechseck als Grundfläche

Die Grundfläche der Pyramide hat 6 Ecken. Hinzu kommt die Ecke der Spitze. Insgesamt hat die Pyramide somit 7 Ecken. Die Grundfläche der Pyramide hat 6 Kanten. Dazu kommen 6 Seitenkanten, also insgesamt 12 Kanten.

Die Pyramide hat eine Grundfläche und 6 Seitenflächen. Insgesamt hat die Pyramide also 7 Flächen.


Aufgabe 7: Ist das noch eine Pyramide?

Nachdem wir uns die Definition einer Pyramide erarbeitet haben, kannst du dieses Wissen in der nächsten Aufgabe anwenden. Wechsle nun zu deinem Arbeitsblatt und bearbeite Aufgabe 7: Ist das noch eine Pyramide?

Grundlagen-bearbeiten.png zurück zum Arbeitsblatt
Schaue dir die Grundfläche und die Seitenflächen des Körpers an.
Pyramiden haben ein Vieleck als Grundfläche und Dreiecke als Seitenflächen. Außerdem treffen sich die Seitenflächen in einem Punkt, die Spitze. Erfüllt der Körper diese Kriterien?
Bei dem Körper handelt es sich um eine Pyramide. Die Grundfläche ist ein Fünfeck und damit ein Vieleck. Der Körper wird von Dreiecken begrenzt. Außerdem treffen sich die Seitenflächen in einem Punkt. Diese Pyramide ist besonders, da sich die Spitze nicht über dem Mittelpunkt der Grundfläche befindet. Deshalb nennt man diese Pyramide eine schiefe Pyramide.
Bei dem Körper handelt es sich um eine Pyramide mit quadratischer Grundfläche. Außerdem bestehen die Seitenflächen aus Dreiecken, die sich in einem Punkt treffen. Das Besondere an dieser Pyramide ist, dass sie nicht auf ihrer Grundfläche steht, sondern auf einer Seitenfläche liegt.
Bei dem Körper handelt es sich nicht um eine Pyramide, da die Grundfläche ein Kreis und damit kein Vieleck ist. Außerdem sind die Seitenflächen keine Dreiecke. Dieser Körper ist ein Kegel.
Bei dem Körper handelt es sich um eine Pyramide. Die Grundfläche ist ein Sechseck und damit ein Vieleck. Außerdem bestehen die Seitenflächen aus Dreiecken, die sich in einem Punkt treffen. Da die Grundfläche unregelmäßig ist, spricht man von einer unregelmäßigen Pyramide.



Nun solltest du Pyramiden von anderen Körpern unterscheiden und diese genauer charakterisieren können. Falls du das Gefühl haben solltest, dass dir dies noch schwer fällt, wiederhole das Kapitel gerne, bis du dich sicherer fühlst. Wenn du schon ein Pyramiden-Profi bist, kannst du zum nächsten Kapitel wechseln!