Buss-Haskert/Gleichungen (mit Klammern)/Anwendungsaufgaben: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | |||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | |||
<br> | <br> | ||
{{Navigation|[[Buss-Haskert/Gleichungen (mit Klammern)|Gleichungen (mit Klammern) Startseite]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Gleichungen mit Klammern|1) Gleichungen mit Klammern]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Anwendungsaufgaben|2) Anwendungsaufgaben]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Formeln|3) Formeln]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Checkliste|4) Checkliste]]}} | {{Navigation|[[Buss-Haskert/Gleichungen (mit Klammern)|Gleichungen (mit Klammern) Startseite]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Gleichungen mit Klammern|1) Gleichungen mit Klammern]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Anwendungsaufgaben|2) Anwendungsaufgaben]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Formeln|3) Formeln]]<br>[[Buss-Haskert/Gleichungen (mit Klammern)/Checkliste|4) Checkliste]]}} |
Version vom 9. Oktober 2022, 16:38 Uhr
1) Gleichungen mit Klammern
2) Anwendungsaufgaben
3) Formeln
4) Checkliste
Anwendungsaufgaben zu Gleichungen mit Klammern
Es gibt verschiedene Bereiche, in denen Gleichungen mit Klammern Anwendung finden:
Bist du fit? Vorübungen
Addition: 1. Summand + 2. Summand = Wert derSumme
Subtraktion: Minuend - Subtrahend = Wert der Differenz
Multiplikation: 1. Faktor ∙ 2. Faktor = Wert des Produktes
Division: Dividend: Divisor = Wert des Quotienten
Addition | addieren | vermehren | plus | |
Subtraktion | subtrahieren | vermindern | minus | |
Multiplikation | multiplizieren | verdoppeln | vervielfachen | mal |
Division | dividieren | halbieren | teilen | geteilt |
Schreibe über den Aufgabentext die passenden Rechenzeichen. Dies hilft dir beim Aufstellen der Terme.
Quadrat | u = 4·a | A = a² | ||
Rechteck | u = 2a + 2b | A = a·b | ||
gleichschenkliges Dreieck | u = 2a + c | 2 gleich lange Seiten | α+β+γ=180° | |
gleichseitiges Dreieck | u = 3a | 3 gleich lange Seiten | α+β+γ=180° |
In allen Anwendungsbereichen ist es wichtig, dass du den Text genau liest, dir die Situation vorstellst und mit eigenen Worten beschreibst.
6-Schritte-Verfahren für Anwendungsaufgaben
Diese 6 Schritte helfen dir beim Lösen der Anwendungsaufgaben. Beachte vor allem die Schritte 1 und 2. Notiere genau, welche Bedeutung die Variable hat und stelle die Terme passend zum Text auf. Dann schaffst es es sicherlich auch, eine Gleichung aufzustellen und diese zu lösen.
Mathematische Texte
Bei mathematischen Texten ist die Variable immer die gesuchte Zahl. Gehe schrittweise vor (6-Schritte-Verfahren).
Ein Term lautet also 51-5x.
Schreibe das Divisionszeichen als Bruchstrich, dann ist der Term übersichtlicher.
Der zweite Term heißt also .
Löse die Gleichung nun auf, indem du als erstes mit dem Nenner 3 multiplizierst.
51 - 5x = |·3 Multipliziere jeden Summanden mit 3!
153 - 15x = 2x
Geometrische Anwendungen
Bei geometrischen Anwendungen zeichne immer eine Skizze! Sie hilft dir, die Bedeutung der Variablen festzulegen und die Terme passend aufzustellen.
Flächeninhalt rotes Rechteck: A = 9·(x+4)
Flächeninhalt schwarzes Rechteck: A = 15·x
Wenn die Rechtecke flächengleich sind, muss also gelten
Löse diese Gleichung nach x auf.
schwarzes Rechteck: Länge x+2-5 = x-3 Breite x+8.
Gleichung: (x+2)x = (x-3)(x+8) Klammern auflösen:"Jeder gibt jedem die Hand"
Vielleicht hilft es dir, α=x zu nennen, dann kannst du die Variable x in der Gleichung verwenden (statt α)
Gleichung:α + β+ γ = 180° also
α + (α + 15°) + (α + 30°)= 180°
bzw. mit der Variabel x
Wähle z.B. γ=x
Dann sind die Terme für α und β
α=2x
β=3x
x+8 Länge des Rechtecks
u = 84cm Erinnerung: Umfang ist drum herum ("Kalle läuft").
Bestimme nun die jeweiligen Seitenlängen, indem du für x den Wert 6 einsetzt und berechne dann den Umfang.
(Lösung: A 46m; B 38m
Sachsituationen
x = Alter von Karin
festzulegen. Stelle damit die Terme für das Alter von Erna und Lisa auf.
Bedeutung der Variblen: Alter von Karin = x
Terme aufstellen: Alter von Erna = 2x
Entnimm die entsprechenden Werte dem Bild. (Lösung x=20)
Stelle nun Terme für die übrigen Tage auf.
(Lösung x=52)
Test 2
0-15 Punkte: Bearbeite weitere Aufgaben auf der Seite Aufgabenfuchs ab Nr. 39 passend zu deinen Fehlerschwerpunkten. Aufgabenfuchs
16-24 Punkte: 3) Formeln
- ↑ Das Buch "Mathematik real 8 - Differenzierende Ausgabe" aus dem Cornelsenverlag verwendet ebenfalls dieses Verfahren zur Lösung von Sachaufgaben.