Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 113: | Zeile 113: | ||
{{Lösung versteckt|1=Den Parameter e hast du schon auf der vorherigen Seite kennengelernt, dort hieß er "c".|2=Erinnerung Parameter c|3=Verbergen}} | {{Lösung versteckt|1=Den Parameter e hast du schon auf der vorherigen Seite kennengelernt, dort hieß er "c".|2=Erinnerung Parameter c|3=Verbergen}} | ||
{{Box|Übung | {{Box|Übung 13 - online|* Ordne in der LearningApp den Funktionsgraphen die passenden Funktionsgleichungen zu. | ||
* Löse anschließend auf der Seite [https://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php '''realmath'''] so viele Aufgaben, dass du mindestens 300 Punkte sammelst. <br> | * Löse anschließend auf der Seite [https://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php '''realmath'''] so viele Aufgaben, dass du mindestens 300 Punkte sammelst. <br> | ||
|Üben}} | |Üben}} | ||
Zeile 122: | Zeile 122: | ||
<br /><br /> | <br /><br /> | ||
{{Box|1=Übung | {{Box|1=Übung 14 - Scheitelpunktform online|2=Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.|3=Üben}} | ||
{{LearningApp|app=2767802|width=100%|height=400px}} | {{LearningApp|app=2767802|width=100%|height=400px}} | ||
{{LearningApp|app=pq6e32wtk20|width=100%|height=400px}} | {{LearningApp|app=pq6e32wtk20|width=100%|height=400px}} | ||
{{Box|Übung | {{Box|Übung 15 - Scheitelpunktform|Löse die Aufgaben aus dem Buch. | ||
* S. 16, Nr. 1 | * S. 16, Nr. 1 | ||
* S. 16, Nr. 2 | * S. 16, Nr. 2 | ||
Zeile 136: | Zeile 136: | ||
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|2=Tipp zur Lösungskontrolle Nr. 3|3=Verbergen}} | <ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|2=Tipp zur Lösungskontrolle Nr. 3|3=Verbergen}} | ||
{{Box|Übung | {{Box|Übung 16 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft. | ||
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php Aufgabe 1] | * [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php Aufgabe 1] | ||
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php Aufgabe 2] | * [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php Aufgabe 2] | ||
Zeile 148: | Zeile 148: | ||
|Üben}} | |Üben}} | ||
<br> | <br> | ||
{{Box|Übung | {{Box|Übung 17 - Scheitelpunktform ablesen und Parabeln zeichnen|Bearbeite die nachfolgenden GeoGebra-Applets.|Üben}} | ||
Originallink: https://www.geogebra.org/m/hgctdsff | Originallink: https://www.geogebra.org/m/hgctdsff | ||
<ggb_applet id="tvngcubu" width="1200" height="850" border="888888" /> | <ggb_applet id="tvngcubu" width="1200" height="850" border="888888" /> | ||
Zeile 171: | Zeile 171: | ||
<br> | <br> | ||
{{Box|Übung | {{Box|Übung 18 - Parablen skizzieren (online)|Bearbeite die Übungen aus dem GeoGebra-Applet, bis du sicher bist bei den Lösungen.|Üben}} | ||
<ggb_applet id="vmjjuqdt" width="827" height="526" border="888888" /> | <ggb_applet id="vmjjuqdt" width="827" height="526" border="888888" /> | ||
<br>Appelt von Wolfgang Wengler<br> | <br>Appelt von Wolfgang Wengler<br> | ||
{{Box|Übung | {{Box|Übung 19|Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein. | ||
* S.16 Nr. 4 | * S.16 Nr. 4 | ||
* S.16 Nr. 5 | * S.16 Nr. 5 | ||
Zeile 199: | Zeile 199: | ||
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}} | [[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}} | ||
{{Box|Übung | {{Box|Übung 20 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt. | ||
* S. 16 Nr. 6|Üben}} | * S. 16 Nr. 6|Üben}} | ||
Version vom 7. Juli 2022, 15:00 Uhr
SEITE IM AUFBAU
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
5 Scheitelpunktform quadratischer Funktionen
Und nun noch einmal schrittweise:
5.1 Detlef: f(x) = (x + d)²
Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.
5.2 Emil: f(x) = x² + e
emil ist ebenfalls sehr sportlich:
Er kann sehr hoch springen, ebenso gut kann er tauchen.
Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)²+e
Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt
Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.
Originallink: https://www.geogebra.org/m/hgctdsff
Applet von Hans-Jürgen Elschenbroich
Originallink: https://www.geogebra.org/m/CdNTYBpZ
Applets von Wolfgang Wengler
Buch GeoGebra: Parabeln zeichnen
Originallink: https://www.geogebra.org/m/ZTXR23d8#chapter/236008
Applets von Bernhard Krügel
Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
Appelt von Wolfgang Wengler