Benutzer:Buss-Haskert/Quadratische Funktionen/Gestreckte und gestauchte Parabel: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 121: | Zeile 121: | ||
* '''Öffnung:''' Das Vorzeichen von a bestimmt die Öffnung der Parabel: Für '''a>0''' (a positiv) ist die Parabel nach '''oben''' geöffnet, für '''a<0 '''(a negativ) ist sie nach '''unten '''geöffnet. | * '''Öffnung:''' Das Vorzeichen von a bestimmt die Öffnung der Parabel: Für '''a>0''' (a positiv) ist die Parabel nach '''oben''' geöffnet, für '''a<0 '''(a negativ) ist sie nach '''unten '''geöffnet. | ||
* '''Form:''' Die Parabel ist gestaucht (breiter) für 0 < |a| < 1 (also für Werte von a zwischen -1 und 1). Sie ist gestreckt (schmaler) für |a| > 1 (also für Werte von a > 1 bzw. a < -1).|3=Arbeitsmethode}} | * '''Form:''' Die Parabel ist gestaucht (breiter) für 0 < |a| < 1 (also für Werte von a zwischen -1 und 1). Sie ist gestreckt (schmaler) für |a| > 1 (also für Werte von a > 1 bzw. a < -1).|3=Arbeitsmethode}} | ||
==='''<big>Sportler: A</big>'''nton: f(x) = '''<big><big><big>a</big></big></big>'''x²=== | |||
Anton ist sehr sportlich, er spielt Basketball: | |||
<gallery widths="200" heights="200"> | |||
Datei:Basketball-155997 1280.png|normal | |||
Datei:Basketball gestreckt.png|gestreckt (schmaler) | |||
Datei:Basketball gestaucht.png|gestaucht (breiter) | |||
</gallery> | |||
{{Box| Bedeutung des Parameters a|Welche Rolle spielt '''<big><big><big>a</big></big></big>'''nton für den Graphen der Parabel?|Frage}} | |||
{{LearningApp|app=p30pv7jok19|width=100%|height=400px}} | |||
{{Box|Bedeutung des Parameters a|Schreibe den Lückentext in dein Heft ab.|Arbeitsmethode}} | |||
{{Box|Wende dein Wissen an.|Kreuze die richtige Aussage an und ordne den Graphen die passende Funktionsgleichung zu.|Üben}} | |||
<br /> | |||
<div class="multiplechoice-quiz"> | |||
1. Beschreibe den Verlauf der Parabel f(x) = 5x<sup>2</sup> | |||
(nach oben geöffnet) (!nach unten geöffnet) (gestreckt) (!gestaucht) | |||
2. Beschreibe den Verlauf der Parabel f(x) = -3x<sup>2</sup> | |||
(!nach oben geöffnet) (nach unten geöffnet) (gestreckt) (!gestaucht) | |||
3. Beschreibe den Verlauf der Parabel f(x) = 0,5x<sup>2</sup> | |||
(nach oben geöffnet) (!nach unten geöffnet) (!gestreckt) (gestaucht) | |||
4. Beschreibe den Verlauf der Parabel f(x) = -<math>{1 \over 3}</math>x<sup>2</sup> | |||
(!nach oben geöffnet) (nach unten geöffnet) (!gestreckt) (gestaucht) | |||
<br /></div> | |||
<div class="lueckentext-quiz"> | |||
{| | |||
|- | |||
| style="padding:5px" |[[Datei:F(x) = x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = -x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = 0.5x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = -0.5x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = 2x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = -2x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = 5x².png]] | |||
| style="padding:5px" |[[Datei:F(x) = 0.2x².png]] | |||
|- | |||
|<strong>y = x<sup>2</sup> </strong> ||<strong>y = - x<sup>2</sup> </strong> ||<strong>y = 0,5x<sup>2</sup></strong> ||<strong>y = -0,5x<sup>2</sup></strong> ||<strong>y = 2x<sup>2</sup> </strong> ||<strong>y = -2x<sup>2</sup></strong> ||<strong>y = 5x<sup>2</sup></strong> ||<strong>y = <math>{1 \over 5}</math>x<sup>2</sup></strong> | |||
|} | |||
</div> | |||
{{LearningApp|app=poebgmcnc20|width=100%|height=800px}} | |||
{{Box|Übung 4|Zeichne die Parabeln zu den Aufgaben mit GeoGebra. Beschreibe im Wechsel mit deiner Parnterin/deinem Partner die Öffnung (nach oben oder nach unten) und die Form (gestreckt oder gestaucht) der Parabel. | |||
* S. 13, Nr. 1 | |||
* S. 13, Nr. 2|Meinung}} | |||
Zusammenfassung: | Zusammenfassung: | ||
{{#ev:youtube|WWw-XFO3CBE|800|center}} | {{#ev:youtube|WWw-XFO3CBE|800|center}} | ||
<br> | <br> | ||
{{Box|1=Übung | {{Box|1=Übung 5: Den Faktor a der Funktionsgleichung bestimmen|2=a) Gegeben ist die Funktionsgleichung f(x) = ax² und ein Punkt P(2|-8).<br> | ||
Bestimme den Faktor a und beschreibe die Parabel.<br> | Bestimme den Faktor a und beschreibe die Parabel.<br> | ||
b) Löse aus dem Buch | b) Löse aus dem Buch |
Version vom 5. Juli 2022, 18:09 Uhr
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
Link zum Applet (falls es nicht vollständig dargestellt wird):[1]
Applet von G.von Lechberg
Wie erstelle ich einen Schieberegler für die Funktionsgleichung f(x) = ax²?
Gehe vor, wie in den Bildern beschrieben:
Sportler: Anton: f(x) = ax²
Anton ist sehr sportlich, er spielt Basketball:
1. Beschreibe den Verlauf der Parabel f(x) = 5x2
(nach oben geöffnet) (!nach unten geöffnet) (gestreckt) (!gestaucht)
2. Beschreibe den Verlauf der Parabel f(x) = -3x2
(!nach oben geöffnet) (nach unten geöffnet) (gestreckt) (!gestaucht)
3. Beschreibe den Verlauf der Parabel f(x) = 0,5x2
(nach oben geöffnet) (!nach unten geöffnet) (!gestreckt) (gestaucht)
4. Beschreibe den Verlauf der Parabel f(x) = -x2
(!nach oben geöffnet) (nach unten geöffnet) (!gestreckt) (gestaucht)
Zusammenfassung:
Lösung:
geg: f(x) = ax²; P(2|-8)
ges: a
Setze die Koordinaten des Punktes P in die Funktionsgleichung ein und löse die Gleichung nach a auf.
f(x) = ax²;P(2|-8)
-8 = a·2²
-8 = a·4 |:4
-2 = a
also f(x) = -2x².
Form: Die Parabel zur Funktionsgleichung f(x) = -2x² ist eine nach unten geöffnete, gestreckte Parabel. Der Scheitelpunkt liegt im Ursprung S(0|0).
Mögliche Fragen:
- Wie lautet die Funktionsgleichung für das Halteseil? Zeichne das Koordinatensystem passend für die Funktionsgleichung der Form f(x) = ax² ein.
Wie lang ist längste das Lastkabel zwischen Halteseil und Straße?
Wie lang sind alle Lastkabel der Brücke insgesamt?
Realität: Halteseil der Brücke.
Mathematisches Modell: Parabel, quadratische Funktion
Rechnen: Lege das Koordinatenkreuz so, dass der Scheitelpunkt im Ursprung liegt. Damit hat die Funktionsgleichung die Form f(x) = ax².
Du kennst die Punkte A(-640|144) und B(640|144). Setze diese in die Gleichung ein und löse nach a auf.
Für die Lastseile kennst du die x-Koordinate, z.B. x = -600. Bestimme die zugehörige y-Koordinate, dies ist die Länge des Seils.
Tipp: Skizze!
Zeichne das Koordinatensystem so ein, dass der Scheitelpunkt S im Ursprung liegt. Dann kannst du die Funktionsgleichung der Form f(x) = ax² nutzen.
Beschrifte die Skizze mit den gegebenen Größen.
Koordinatenkreuz passend eingetragen:
Die Spannweite w=486m und die Höhe h=88m führt zu den Punkten P(243|88) und Q(-243|88). Setze die Koordinaten passend in die Funktionsgleichung f(x) = ax² ein und löse nach a auf.
Es können die Punkte P(-23,5|-6,6), Q(-17|-6,5), R(-10,5|-1,3) und S(0|0) abgelesen werden. Die Koordinaten von P eingesetzt in die Funktionsgleichung f(x) = ax² ergeben für a den Wert a=≈-0,012.
Bestimme a mithilfe des Punktes Q: a=≈-0,012.
Bestimme a mithilfe des Punktes R: a=≈-0,012.
Die Spannweite beträgt w=158m, die Höhe h=69m. Daher kennst du die Punkte P(-79|-69) und Q(79|-69)
Setze die Koordianten in die Funktionsgleichung ein und prüfe, ob du a=- erhältst.
ODER
Setze die x-Koordiante eines Punktes in die Funktionsgleichung ein und prüfe, ob die berechnete y-Koordinate passt.