Benutzer:L.hodankov/Zuordnungen: Unterschied zwischen den Versionen
(Lernpfad kopiert) Markierung: 2017-Quelltext-Bearbeitung |
(Kopier-Hinweis zugefügt, Link geändert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Navigation|[[Benutzer: | Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Benutzer:Buss-Haskert/Lernpfad_Zuordnungen_und_Dreisatz. Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlich unter der Lizenz CC BY SA. | ||
Herzlichen Dank! | |||
{{Navigation|[[Benutzer:L.hodankov/Lernpfad Zuordnungen| 1. Zuordnungen]]<br>[[Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Proportionale Zuordnungen| 2. Proportionale Zuordnungen und Dreisatz]]<br>[[Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Umgekehrt proportionale Zuordnungen| 3. Umgekehrt proportionale Zuordnungen und Dreisatz]]<br>[[Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Bunte Mischung|4. Bunte Mischung - Übungen]]<br>[[Benutzer:Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Checkliste|5. Checkliste]]}} | |||
===2. Proportionale Zuordnungen und Dreisatz=== | ===2. Proportionale Zuordnungen und Dreisatz=== |
Version vom 30. November 2021, 17:55 Uhr
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Benutzer:Buss-Haskert/Lernpfad_Zuordnungen_und_Dreisatz. Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlich unter der Lizenz CC BY SA. Herzlichen Dank!
2. Proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
4. Bunte Mischung - Übungen
5. Checkliste
2. Proportionale Zuordnungen und Dreisatz
Mögliche Darstellungen sind die Textform, eine Wertetabelle, der Graph (Schaubild) und die Rechenvorschrift.
2.1 Proportionale Zuordnungen erkennen
Zusammenfassung:
Die Zuordnung Gewicht des Käses (g) → Preis (€) ist proportional, denn doppelt so viel Käse kostet doppelt so viel.
Die Zuordnung Alter eines Kindes → Körpergröße ist nicht proportional, denn wenn ein Kind doppelt so alt ist, ist es nicht auch doppelt so groß.
Das nachfolgende Video erklärt, wie du die Proportionalität bei Wertetabellen prüfen kannst (Quotientengleichheit)
2.2 Dreisatz bei proportionalen Zuordnungen: Mathematik richtig lecker!
Die Zuordnung lautet: Anzahl der Portionen Menge der Zutat.
Die Zuordnung Anzahl der Portionen Menge der Zutat ist proportional, denn für doppelt so viele Portionen benötigt man auch die doppelte Menge der Zutaten. Daher können wir mit drei Schritten die Mengen für ein Klassenrezept berechnen:
In Teil b) bietet sich 0,5 kg als Zwischengröße an und in Teil c) 0,90€.
Flächeninhalt (Rechteck) = Länge·Breite
2.3 Angebote vergleichen
Ein Supermarkt bietet eine 150g-Packung Cookies für 1,95 an.
Auf dem Markt werden selbst gebackene Cookies in Tüten zu je 250g für 3,00€ verkauft.
Vergleiche die Angebote.
Supermarkt:
150g 1,95
50g 0,65€
Markt:
250g 3,00
50g 0,60€
2.4 Vermischte Übungen zu proportionalen Zuordnungen