Digitale Werkzeuge in der Schule/Mathematik trifft Kunst/Kunstwerke analysieren – Achsensymmetrie erkennen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 44: Zeile 44:
<br>
<br>
{{Box | Aufgabe 3: Richtig oder Falsch?!|  
{{Box | Aufgabe 3: Richtig oder Falsch?!|  
Anna hat die Aufgaben 1 und 2 auch bearbeitet und sich folgendes dazu notiert. '''Beurteile''' ob ihre Aussagen richtig oder falsch sind.
Anna hat die Aufgaben 1 und 2 auch bearbeitet und sich folgendes dazu notiert. '''Beurteile''' ob ihre Aussagen richtig oder falsch sind, indem du das entsprechende Kästchen anklickst.
<br>
[[Datei:Symmetrieeigenschaften.jpg|center]]
<br>
'''Kreuze an''' ob die Aussagen der vier Freunde richtig oder falsch sind.


<quiz display="simple">
<quiz display="simple">

Version vom 21. November 2021, 19:53 Uhr


Info

Auf der Startseite hast du bereits gesehen, dass es Kunstwerke gibt, bei denen das Gleiche noch einmal gespiegelt auftritt. Solche Kunstwerke wollen wir nun genauer untersuchen.

Am Ende dieses Kapitels kannst du gespiegelte Muster in Kunstwerken erkennen und eindeutig beschreiben.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.


Viel Erfolg bei der Bearbeitung!


Eigenschaften gespiegelter Kunstwerke entdecken

Aufgabe 1: Falten und Spiegelachse

Der Schmetterling unten versucht dir eine Eigenschaft von gespiegelten Kunstwerken zu zeigen, kannst du diese finden?
Notiere deine Ideen auf dem Arbeitsblatt.

About icon (The Noun Project).svg Bedienhinweis:

  • Greife mit der Maus den blauen Knopf indem du ihn mit der linken Maustaste anklickst und diese dann gedrückt hälst.
  • Ziehe durch Bewegung der Maus nach links und rechts nun den blauen Knopf hin und her.
GeoGebra



Aufgabe 2: Abstandseigenschaft

Untersuchen wir nun den Schmetterling nochmal genauer, indem wir uns einen bestimmten Punkt P anschauen.
Was fällt dir auf? Notiere dies ebenfalls auf deinem Arbeitsblatt.

About icon (The Noun Project).svg Bedienhinweis:

  • Greife mit der Maus den Punkt P indem du ihn mit der linken Maustaste anklickst und diese dann gedrückt hälst.
  • Zeichne dann mit der Maus die Linien des Schmetterlings entlang, indem du die Maus bewegst. Halte die Maus dabei weiterhin gedrückt.


GeoGebra



Aufgabe 3: Richtig oder Falsch?!

Anna hat die Aufgaben 1 und 2 auch bearbeitet und sich folgendes dazu notiert. Beurteile ob ihre Aussagen richtig oder falsch sind, indem du das entsprechende Kästchen anklickst.

1 Gespiegelte Figuren kann ich nicht so falten, dass beide Hälften genau aufeinanderpassen.

richtig
falsch

2 Es gehören immer zwei Punkte zusammen. Punkt und Spiegelpunkt.

richtig
falsch

3 Punkt und Spiegelpunkt sind immer gleichweit von der Spiegelachse entfernt.

richtig
falsch

4 Der Punkt und der Spiegelpunkt liegen immer nebeneinander auf der gleichen Höhe.

richtig
falsch


Merksatz

Übertrage den folgenden Merksatz auf dein Arbeitsblatt.

Eine Figur, die du so falten kannst, dass beide Hälften genau aufeinanderpassen, nennt man achsensymmetrisch.
Die Faltkante heißt Symmetrieachse.

Zu jedem Originalpunkt gehört ein Bildpunkt. Originalpunkt und Bildpunkt haben den gleichen Abstand zur Symmetrieachse.

Achsensymmetrisch oder nicht?

Aufgabe 4: Kunstwerke einordnen (1)


Ordne die folgenden Kunstwerke danach ein, ob sie achsensymmetrisch sind oder nicht. Dazu kannst du die Bilder nach links oder rechts ziehen.

About icon (The Noun Project).svg Falls du einen Hinweis brauchst, klicke oben links in die Ecke auf die Glühbirne.

About icon (The Noun Project).svg Wenn du fertig bist, klicke unten rechts auf den blauen Haken und überprüfe dein Ergebnis.




Aufgabe 5: Kunstwerke einordnen (2)


In dieser Aufgabe hast du die Chance, dein Können nun an schwierigeren Figuren zu beweisen.

Ordne auch hier die folgenden Kunstwerke danach ein, ob sie achsensymmetrisch sind oder nicht. Dazu kannst du die Bilder nach links oder rechts ziehen.

About icon (The Noun Project).svg Falls du einen Hinweis brauchst, klicke oben links in die Ecke auf die Glühbirne oder schaue dir das Beispiel unterhalb der Aufgabe an.



An den folgenden Beispielen siehst du, wie es aussehen kann, wenn die Symmetrieachse entweder innerhalb oder außerhalb der Figur liegt.  

Beispiel 1 zeigt eine Figur, in der die Symmetrieachse innerhalb liegt.

Symmetrieachse innerhalb einer Figur.jpg

Beispiel 2 zeigt eine Figur, in der die Symmetrieachse außerhalb liegt.

Symmetrieachse außerhalb der Figur.jpg

Symmetrieachse finden

Aufgabe 6: Symmetrieachsen erkennen und einzeichnen (1)

Auf deinem Arbeitsblatt findest du verschiedene Abbildungen. Zeichne mit einem Lineal und einem Bleistift die Symmetrieachse der ersten beiden Figuren ein. Anschließend kannst du die Lösungen hier kontrollieren.



Achsensymmetrie Baum .jpg

Achsensymmetrie E.jpg



Aufgabe 7: Symmetrieachsen erkennen und einzeichnen (2)

War die letzte Aufgabe noch zu einfach? Zeichne nun alle Symmetrieachsen der übrigen Figuren ein, die du finden kannst. Die Figuren können mehrere Symmetrieachsen haben. Du kannst deine Lösungen wieder kontrollieren. Wenn du dazu Hilfen brauchst, kannst du dir auch erst ein Beispiel anschauen.

Symmetrieachsen Kreuz (Beispiel).jpg

Achsensymmetrie Sanduhr.jpg

Achsensymmetrie Sterne.jpg

Achsensymmetrie Quadrat.jpg

Keine Achsensymmetrie .jpg

Zusätzliche Eigenschaften von achsensymmetrischen Figuren

Aufgabe 8: Lückentext

Nach deinen bisherigen Übungen fällt es dir bestimmt nicht mehr schwer, einen Lückentext auszufüllen. Du findest ihn auf deinem Arbeitsblatt. Nach dem Ausfüllen kannst du deine Lösungen hier kontrollieren.

Merksatz



Alle Faltkanten, die eine Figur halbieren, sind Symmetrieachsen. Figuren können entweder keine, genau eine oder mehrere Symmetrieachsen haben.

Außerdem kann die Symmetrieachse entweder innerhalb oder außerhalb der Figur liegen.