Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 9: | Zeile 9: | ||
[[Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren|8 Modellieren (Anwendungsaufgaben)]]}} | [[Benutzer:Buss-Haskert/Quadratische Funktionen/Modellieren|8 Modellieren (Anwendungsaufgaben)]]}} | ||
==8 Modellieren - Anwendungsaufgaben== | ==8 Modellieren - Anwendungsaufgaben== | ||
In unserer Umgebung gibt es viele Beispiele für Parabeln. Besonders häufig sind sie z.B. beim Brückenbau und bei Wurf- bzw. Flugbahnen zu sehen.<br> | |||
Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:<br> | |||
* Scheitelpunkt | |||
* Nullstellen | |||
* Schnittpunkt mit der y-Achse | |||
* Koordinaten eines beliebigen Punktes | |||
{{Box|Fragen zu eigenen Parabeln stellen|Du hast während der Klassenfahrt Fotos von Parabeln gemacht. Zeichne in das Foto ein Koordinatenkreuz und stelle Fragen an dieses Bild, so dass der Scheitelpunkt, die Nullstellen, der Schnittpunkt mit der y-Achse oder ein beliebiger Punkt diese Frage beantworten.|Meinung}} | |||
{{Box|Übung 1: Modellieren mit quadratischen Funktionen|[[Datei:Modellieren.png|rahmenlos|rechts]]Löse die Aufgaben aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich. | |||
* S. 24 Nr. 1 | |||
* S. 24 Nr. 2 | |||
* S. 24 Nr. 3 | |||
|Üben}} | |||
Version vom 13. Oktober 2021, 13:56 Uhr
SEITE IM AUFBAU
Quadratische Funktionen - Startseite
1 Quadratische Funktionen entdecken
2 Die Normalparabel f(x) = x²
3 Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
5 Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)² + e
6 Die Normalform f(x) = x² + px + q und die allgemeine Form quadratischer Funktionen f(x) = ax² + bx + c
7 Nullstellen quadratischer Funktionen
8 Modellieren - Anwendungsaufgaben
In unserer Umgebung gibt es viele Beispiele für Parabeln. Besonders häufig sind sie z.B. beim Brückenbau und bei Wurf- bzw. Flugbahnen zu sehen.
Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:
- Scheitelpunkt
- Nullstellen
- Schnittpunkt mit der y-Achse
- Koordinaten eines beliebigen Punktes
IDEENSAMMLUNG
Modellieren
Aufgabe Basektball (mit Lösungsschritten)