|
|
Zeile 578: |
Zeile 578: |
| |Merksatz}} | | |Merksatz}} |
|
| |
|
| <nowiki>{{Box | </nowiki>⭐Aufgabe: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform |
| | {{Box |⭐Aufgabe: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform| |
|
| |
|
| '''a'''Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>. | | '''a'''Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>. |
Zeile 611: |
Zeile 611: |
| '''4. Schritt:''' Interpretiere die Lösung der Punktprobe. | | '''4. Schritt:''' Interpretiere die Lösung der Punktprobe. |
|
| |
|
| {{Lösung versteckt|1=Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind|2=Lösung anzeigen|3=Lösung verbergen} | | {{Lösung versteckt|1=Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind.|2=Lösung anzeigen|3=Lösung verbergen} |
|
| |
|
|
| |
|
Zeile 655: |
Zeile 655: |
|
| |
|
| <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)</math>|2=Lösung 3 anzeigen|3=Lösung 3 verbergen}} | | <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)</math>|2=Lösung 3 anzeigen|3=Lösung 3 verbergen}} |
| |Arbeitsmethode| Farbe={{Farbe|orange}}}} | | |Arbeitsmethode|Farbe={{Farbe|orange}}}} |
|
| |
|
| {{Box|⭐Aufgabe 10: Lagebeziehungen untersuchen.| | | {{Box|⭐Aufgabe 10: Lagebeziehungen untersuchen.| |
Info
In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt.
Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
- Aufgaben und Kapitel, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Merke:
Zwischen einer Geraden und einer Ebene gibt es drei mögliche Lagebeziehungen.
Die Gerade schneidet die Ebene.
Die Gerade und die Ebene liegen parallel.
Die Gerade liegt in der Ebene.
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene
Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Gegeben sind eine Ebene und eine Gerade . Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.
1. Schritt: Setze die Geraden- und Ebenengleichung gleich:
2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf:
3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:
4. Schritt: Interpretiere die Lösung des Gleichungssystems anhand der Anzahl der Lösungen. Da das Gleichungssystem nur eine Lösung hat, besitzen die Ebene und die Gerade nur einen gemeinsamen Punkt. Also schneidet die Gerade die Ebene.
5. Schritt: Da sich die Ebene und die Gerade schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter in die Geradengleichung ein:
Alternativ kannst du die Parameter und in die Ebenengleichung einsetzen und erhältst den gleichen Punkt.
Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.
1. Setze die Geradengleichung mit der Ebenengleichung gleich.
2. Stelle ein LGS auf.
3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.
4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.
Aufgabe 3: Schnittpunktberechnung
Gegeben sind eine Gerade und eine Ebene .
1. Setze die Geradengleichung mit der Ebenengleichung gleich.
2. Stelle ein LGS auf.
3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.
4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.
5. Berechne den Schnittpunkt, indem du den Wert für
in die Geradengleichung einsetzt.
Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.
1. Setze die Geradengleichung mit der Ebenengleichung gleich: Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \lef t(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) }
2. Stelle ein LGS auf:
3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner:
4. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben.
5. Berechne den Schnittpunkt, indem du den Wert für
in die Geradengleichung einsetzt:
Aufgabe 4: Schatten eines Sonnensegels
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind und . Die Terrasse wird modelliert durch die Ebene . Die Richtung der Sonnenstrahlen entspricht dem Vektor . In welchem Bereich hat Frau Meier nun Schatten?
Hinweis: Da Frau Meier eine sehr große Terrasse hat, kannst du davon ausgehen, dass der Schatten vollständig innerhalb der Terrasse liegt.
Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.
Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst.
Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die
-Koordinate anschaut.
⭐Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen
Bei der Bestimmung der Lagebeziehung zwischen einer Gerade und einer Ebene kann dir der Normalenvektor der Ebene helfen.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene keinen gemeinsamen Punkt besitzen, so sind sie parallel zueinander.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene unendlich viele gemeinsame Punkte besitzen, so liegt die Gerade in der Ebene.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene nicht orthogonal zueinander sind, dann schneiden sich die Gerade und die Ebene und es kann ein Schnittpunkt bestimmt werden.
⭐Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene mit dem Normalenvektor
Gegeben sind eine Gerade und eine Ebene mit dem Normalenvektor .
⭐ Aufgabe 5: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform
a) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.
1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.
Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren
ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich
ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt
ergibt, gilt
.
2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.
Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade
und die Ebene
parallel zueinander.
b) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.
1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.
Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren
ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich
ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt
ergibt, gilt
.
2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.
Der Aufpunkt liegt in der Ebene. Daher liegt die Gerade
in der Ebene
.
c) Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.
1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.
Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren
ergibt, dann sind die beiden Vektoren orthogonal zueiander. Wenn das Skalarprodukt ungleich
ist, dann sind sie nicht orthogonal.
. Da das Skalarprodukt
ergibt, gilt
und
sind nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.
2. Schritt: Berechnung des Schnittpunktes.
Setze die Koordinaten der Gerade
in die Ebenengleichung von
ein und forme nach dem Parameter um.
Die einzelnen Koordinaten der Gerade sind: .
Setze diese Koordinaten in die Ebenengleichung von ein:
Forme nach dem Parameter um:
Setze den Parameter in die Geradengleichung ein, um den Schnittpunkt zu berechnen:
.
Die Gerade
und die Ebene
schneiden sich im Schnittpunkt
.
⭐ Aufgabe 6: Bestimme den Parameter
Gegeben ist eine Ebene .
Bestimme und in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.
a) Die Gerade soll parallel zur Ebene verlaufen.
Damit die Gerade
und die Ebene
parallel zueinander sind, müssen der Richtungsvektor von
und der Normalenvektor von
orthogonal zueinander sein.
.
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt
sein:
.
b) Die Gerade soll in der Ebene liegen.
Damit die Gerade
in der Ebene
liegt, müssen der Richtungsvektor von
und der Normalenvektor von
orthogonal zueinander sein.
Wenn die Gerade
in der Ebene
liegt, liegt jeder Punkt auf der Gerade
auch in der Ebene
. Prüfe mit der Punktprobe, ob der Aufpunkt von
in der Ebene
liegt.
Prüfe mit der Punktprobe, ob der Aufpunkt von
in der Ebene
liegt.
Finde zuerst m: .
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt sein: .
Finde danach durch eine Punktprobe: Setze den Aufpunkt
in die Ebenengleichung ein und löse nach
auf:
.
c) Die Gerade soll die Ebene schneiden.
Der Richtungsvektor der Geraden darf nicht orthogonal zum Normalenvektor von
liegen.
Was bedeutet es für
, wenn der Richtungsvektor der Geraden nicht orthogonal zum Normalenvektor der Ebene liegen darf?
Bestimme, welchen Wert
nicht annehmen darf, damit die Gerade die Ebene schneidet.
Für
ist der Richtungsvektor von
orthogonal zum Normalenvektor von
und die Gerade
liegt parallel zur Ebene
. Jeder andere Wert für
ist eine richtige Lösung.
⭐ Aufgabe 7: Flugzeug
Ein Flugzeug startet am Flughafen Münster-Osnabrück. Seine Flugbahn in den ersten 6 Minuten nach dem Start wird durch die Gerade beschrieben, wobei die Zeit in Minuten nach dem Start bezeichnet. Die Ebene beschreibt eine Nebelwand.
Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.
a) Begründe, dass das Flugzeug die Nebelwand trifft.
Verwende das Skalarprodukt.
. Da das Skalarprodukt
ergibt, sind der Normalenvektor der Ebene
und der Richtungsvektor der Gerade
nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.
b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten sind seit dem Start vergangen?
Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.
⭐Berechnung des Winkels zwischen Gerade und Ebene
⭐ Merke: Berechnung des Winkels zwischen Gerade und Ebene
⭐ Merksatz: Winkel berechnen zwischen Gerade und Ebene
Aufgabe 8 ⭐: Berechnung des Winkels zwischen Gerade und Ebene
Gegeben sind die Gerade und die Ebene . Bestimme den Winkel, unter dem sich die Gerade und die Ebene schneiden.
1. Schritt: Notiere den Richtungvektor der Gerade und den Normalenvektor der Ebene.
und
2. Schritt: Setze die Vektoren in die Formel ein.
3. Schritt: Forme die Gleichung um.
Der Schnittwinkel beträgt also
.
Aufgabe 9⭐: Trinkpäckchen
Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene beschrieben werden.
Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.
Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade veranschaulicht werden: .
Kannst du den Kindern helfen, den Winkel zu berechnen?
Vielleicht hilft dir die Skizze.
Gesucht wird der Winkel zwischen der Gerade und der Ebene . Der Richtungsvektor der Gerade ist . Der Normalenvektor der Ebene kann abgelesen werden: .
Einsetzen der Vektoren in die Formel liefert:
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:
Die Kinder sollten den Strohhalm also in einem Winkel von ca.
in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.
Aufgabe 10⭐: Gerade gesucht
Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.
Eine Gerade soll die -Ebene in einem Winkel von schneiden. Über die Gerade ist nur bekannt, dass sie durch den Punkt und in Richtung des Vektors verläuft. Stelle die Gleichung der Gerade auf, indem du den Parameter bestimmst.
Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?
Der Normalenvektor der
-Ebene verläuft nur in
-Richtung.
Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.
Bestimme zuerst den Normalenvektor der Ebene. Da es sich um die -Ebene handelt, lautet der Normalenvektor .
Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden:
Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: .
Somit kann im letzten Schritt die Gerade
aufgestellt werden. Man erhält
.
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Merke:
Zwischen zwei Ebenen gibt es drei mögliche Lagebeziehungen:
Die Ebenen schneiden sich in einer Schnittgeraden.
Die Ebenen sind parallel.
Die Ebenen sind identisch.
Aufgabe 8: Lückentext zur Lagebeziehung zwischen Ebene und Ebene
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen.
Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform
a)
Gegeben sind eine Ebene und eine Ebene .
Untersuche die Lagebeziehung der beiden Ebenen.
1. Schritt: Setze die beiden Ebenengleichungen gleich.
2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.
3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:
Mithilfe des Gaußverfahrens:
Mithilfe des Taschenrechners:
"Keine Lösung gefunden"
4. Schritt: Interpretiere die Lösung des Gleichungssystems:
In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt:
. Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.
b)
Gegeben sind eine Ebene und eine Ebene .
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
1. Schritt: Setze die beiden Ebenengleichungen gleich.
2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.
3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:
Mithilfe des Gaußverfahrens:
Mithilfe des Taschenrechners:
4. Schritt: Interpretiere die Lösung des Gleichungssystems:
Die Lösungsmenge beträgt:
. Die beiden Ebenen schneiden sich in einer Schnittgeraden.
5. Schritt: Bestimme die Schnittgerade:
Aufgabe 9: Ergebnisse interpretieren
Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch.
a)
Das Gleichungssystem besitzt unendlich viele Lösungen. Da nur einer der Parameter frei wählbar ist, schneiden sich die beiden Ebenen in einer Schnittgeraden.
b)
"Keine Lösung gefunden"
Das Gleichungssystem besitzt keine Lösung, da sich in der dritten Zeile ein Widerspruch befindet. Die Ebenen liegen somit parallel zueinander.
c)
Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen
{{Box |⭐Aufgabe: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform|
aGegeben sind eine Ebene und eine Ebene .
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
1. Schritt: Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.
Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors
Es muss gelten, dass und .
2.Schritt: Interpretiere die Lösung der Skalarprodukte:
Da beide Skalarprodukte der jeweiligen Vektoren
sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.
3. Schritt: Überprüfe die Lagebeziehung mithilfe der Punktprobe.
Verwende für die Punktprobe den Aufpunkt der Ebene
4. Schritt: Interpretiere die Lösung der Punktprobe.
<div class="loesung-verstecken mw-collapsible mw-collapsed" data-expandtext="Lösung anzeigen" data-collapsetext="Lösung verbergen}
b)
Gegeben sind eine Ebene und eine Ebene .
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
1. Schritt: Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.
Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors
2.Schritt: Interpretiere die Lösung der Skalarprodukte:
Da das Skalarprodukt des ersten Richtungsvektors bereits
ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.
3. Schritt: Bestimme die Schnittgerade:
Forme die Ebenengleichung
um, sodass du die Gleichungen für die einzelnen Koordinaten erhälst
Durch Umformen der Ebenengleichung erhält man:
,
,
Setze die Werte für
und
in die Ebenengleichung
ein.
Einsetzen der Werte in die Ebenengleichung ergibt:
Setze
in die Ebenengleichung
ein, um anschließend die Geradengleichung aufstellen zu können.
Einsetzen von in ergibt:
Stelle die Geradengleichung auf:
">
Arbeitsmethode
⭐Aufgabe 10: Lagebeziehungen untersuchen.
Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.
a)
b)
Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.
Da beide Skalarprodukte der jeweiligen Vektoren sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.
Punktprobe:
Da die Koordinatengleichung
nicht erfüllt wird, liegen die Ebenen parallel zueinander.
c)
Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.
Da beide Skalarprodukte der jeweiligen Vektoren sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.
Punktprobe:
Da die Koordinatengleichung von
erfüllt wird, liegt
in
und die Ebenen sind identisch.
⭐Beide Ebenengleichungen in Koordinatenform
⭐Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform
⭐Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform
Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
1. Schritt: Prüfe, ob der Normalenvektor der Ebene ein Vielfaches des Normalenvektors der Ebene ist.
Bei der Betrachtung der Normalenvektoren und fällt direkt auf, dass die beiden Vektoren keine Vielfachen voneinander sind. Man kann also direkt schließen, dass sich die beiden Ebenen in einer Schnittgeraden schneiden. Ein formaler Nachweis würde wie folgt aussehen:
Da das LGS nicht lösbar ist, sind die Gleichungen keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.
2. Schritt: Bestimme die Schnittgerade.
Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.
Mithilfe des Gaußverfahrens:
Mithilfe des Taschenrechners:
linSolve
\{\}
Setze und bestimme und .
Stelle die Geradengleichung auf.
⭐Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform
Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.
Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.
Vergleiche die Gleichungen der zwei Ebenen miteinander.
Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.
Die Ebenen sind parallel, wenn die Normalenvektoren identisch oder Vielfache voneinander sind, aber das LGS keine Lösung besitzt.
Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.
⭐Aufgabe 12: Schnitt von zwei Zeltflächen
Die beiden Seitenflächen eines Zeltes liegen in den Ebenen und . Der Erdboden wird durch die -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem cm entspricht?
Mache dir zunächst eine Skizze von der Situation. Überlege dir, womit die obere Zeltkante beschrieben werden kann.
Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen.
Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln.
Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:
und
Einsetzen von in ergibt:
Die Schnittgerade der beiden Ebenen lautet demnach:
Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der -Koordinate des Vektors bestimmt werden.
Die obere Zeltkante befindet sich also in
m Höhe.
⭐Berechnung des Winkels zwischen Ebene und Ebene
⭐ Merke: Berechnung des Winkel zwischen zwei Ebenen
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel
Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum.
⭐ Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen
Beispiel⭐: Winkel berechnen zwischen zwei Ebenen
Aufgabe 13⭐: Schnittwinkel zwischen Ebenen
Aufgabe 14⭐: Ebenen gesucht
Aufgabe 15⭐: Bank am Wanderweg
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene und die Rückenlehne durch die Ebene beschrieben werden kann.
a) Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen und liegen. Überprüfe, ob dies auf die neue Bank zutrifft.
Mache dir eine Skizze. Überlege genau, welchen Winkel du berechnen musst.
Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank
Als Normalenvektor der Ebene erhält man und als Normalenvektor der Ebene erhält man .
Einsetzen in die Formel liefert:
Umstellen der Formel ergibt:
Wie in der Abbildung zu sehen wurde der Winkel
berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel
beschrieben.
erhält man, indem man
berechnet:
. Mit einem Wert von
liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel.
b)
Skizze: Bänke am Wanderweg
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche kann durch die selbe Ebene beschrieben werden, wie die Sitzfläche der anderen Bank (). Die Rückenlehne entspricht der Ebene Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.
Skizze: Winkel zwischen den beiden Bänken am Wanderweg
Gesucht ist der Winkel zwischen der Ebene
und der Ebene
. Nutze zur Berechnung die Normalenvektoren der Ebenen.
Es soll der Winkel zwischen den beiden Rückenlehnen und berechnet werden.
Die Normalenvektoren der Ebenen lauten und .
Einsetzen in die Formel liefert:
Umstellen der Formel ergibt:
. Der Winkel zwischen den beiden Rückenlehnen beträgt
.