Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 36: | Zeile 36: | ||
a) <math>A(1|{-}3|2)</math>, <math>B(2|2|15)</math> und <math>C({-}4|1|{-}5)</math> | a) <math>A(1|{-}3|2)</math>, <math>B(2|2|15)</math> und <math>C({-}4|1|{-}5)</math> | ||
{{Lösung versteckt|1=<math>E:\vec{x}=\begin{pmatrix} 1 \\ {-}3 \\ 2 \end{pmatrix}+r \cdot \begin{pmatrix} 1 \\ 5 \\ 13 \end{pmatrix}+s\cdot \begin{pmatrix} {-}5 \\ 4 \\ {-}7 \end{pmatrix} </math> .|2=mögliche Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=<math>E:\vec{x}=\begin{pmatrix} 1 \\ {-}3 \\ 2 \end{pmatrix}+r \cdot \begin{pmatrix} 1 \\ 5 \\ 13 \end{pmatrix}+s\cdot \begin{pmatrix} {-}5 \\ 4 \\ {-}7 \end{pmatrix} </math> | ||
Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.|2=mögliche Lösung anzeigen|3=Lösung verbergen}} | |||
b) <math> | b) <math>P(1|10|7)</math>, <math>Q(12|4|3)</math> und <math>R(2|1|2)</math> | ||
{{Lösung versteckt|1=<math>E:\vec{x}=\begin{pmatrix} 1 \\ 10 \\ 7 \end{pmatrix}+r \cdot \begin{pmatrix} 11 \\ {-}6 \\ {-}4 \end{pmatrix}+s\cdot \begin{pmatrix} 1 \\ {-}9 \\ {-}5 \end{pmatrix} </math> .|2=mögliche Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=<math>E:\vec{x}=\begin{pmatrix} 1 \\ 10 \\ 7 \end{pmatrix}+r \cdot \begin{pmatrix} 11 \\ {-}6 \\ {-}4 \end{pmatrix}+s\cdot \begin{pmatrix} 1 \\ {-}9 \\ {-}5 \end{pmatrix} </math> | ||
Hinweis: Dies ist nur eine der möglichen richtigen Lösungen.|2=mögliche Lösung anzeigen|3=Lösung verbergen}} | |||
Kannst du hierzu auch jeweils eine zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt? | Kannst du hierzu auch jeweils eine zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt? | ||
Zeile 64: | Zeile 66: | ||
{{Lösung versteckt|1= Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren <math>\vec{AB}</math> und <math>\vec{AC}</math> die Ortsvektoren zu den Punkten <math> B</math> und <math>C</math> angegeben. | {{Lösung versteckt|1= Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren <math>\vec{AB}</math> und <math>\vec{AC}</math> die Ortsvektoren zu den Punkten <math> B</math> und <math>C</math> angegeben. | ||
Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor | Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor des Punktes <math>C</math> gewählt und als Spannvektoren die Vektoren <math>\vec{CA}</math> und <math>\vec{CB}</math>. Er hätte noch, wie Furkan es gemacht hat, dazuschreiben können, dass es nur eine der möglichen Parameterformen ist. |2= Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | | Arbeitsmethode}} | ||
{{Box | Aufgabe 3: Lückentext zur Parameterform | | {{Box | Aufgabe 3: Lückentext zur Parameterform | | ||
Zeile 107: | Zeile 109: | ||
{{Box | Aufgabe 4: Kirchturm | | {{Box | Aufgabe 4: Kirchturm | | ||
Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von <math>12</math>m. | Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von <math>12</math> m. | ||
<math>A(0|0|0)</math> sind die Koordinaten einer Ecke der Grundfläche des Daches. Die gegenüberliegende Ecke <math>C</math> der Grundfläche hat die Koordinaten <math>C(6|6|0)</math>. | <math>A(0|0|0)</math> sind die Koordinaten einer Ecke der Grundfläche des Daches. Die diagonal gegenüberliegende Ecke <math>C</math> der Grundfläche hat die Koordinaten <math>C(6|6|0)</math>. | ||
'''a)''' Bestimme die Koordinaten der fehlenden Eckpunkte <math>B</math> und <math>D</math>, sowie der Dachspitze <math>S</math>. Stelle die Ebenengleichung der Ebene <math>E</math> auf, in der die Punkte <math>B</math>, <math>C</math> und <math>S</math> liegen. | '''a)''' Bestimme die Koordinaten der fehlenden Eckpunkte <math>B</math> und <math>D</math>, sowie der Dachspitze <math>S</math>. Stelle die Ebenengleichung der Ebene <math>E</math> auf, in der die Punkte <math>B</math>, <math>C</math> und <math>S</math> liegen. | ||
Zeile 114: | Zeile 116: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Die Punkte haben die folgenden Koordinaten: | Die Punkte haben die folgenden Koordinaten: | ||
Punkt <math>B (6|0|0)</math> | Punkt <math>B (6|0|0)</math>, | ||
Punkt <math>D (0|6|0)</math> | Punkt <math>D (0|6|0)</math> und | ||
Punkt <math>S (3|3|12)</math>. | Punkt <math>S (3|3|12)</math>. | ||
Die Koordinaten des Punktes <math>S</math> kannst du bestimmen, | Die Koordinaten des Punktes <math>S</math> kannst du bestimmen, da die Spitze senkrecht über dem Mittelpunkt der Grundfläche der Pyramide steht. Die <math>x_1</math>-Koordinate kann somit durch <math>\frac{1}{2} \cdot \vec{AB}</math> berechnet werden und die <math>x_2</math>-Koordinate durch <math>\frac{1}{2} \cdot \vec{BC}</math>. Alternativ könntest du auch die <math>x_1</math>- und die <math>x_2</math>-Koordinate mithilfe der Diagonalen, also <math>\frac{1}{2} \cdot \vec{AC}</math> berechnen. | ||
Eine mögliche Parameterform der Ebene | Eine mögliche Parameterform der Ebene wäre: <math>E: \vec{x}=\begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}+s \cdot \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} +t\cdot \begin{pmatrix} {-}3 \\ 3 \\ 12 \end{pmatrix}</math> | ||
|2=Lösung |3=Lösung verbergen}} | |2=Lösung |3=Lösung verbergen}} | ||
{{Lösung versteckt|1=Falls du noch weiter üben willst, kannst du auch die Ebenengleichungen der übrigen Dachseiten und der Grundfläche bestimmen. |2= | {{Lösung versteckt|1=Falls du noch weiter üben willst, kannst du auch die Ebenengleichungen der übrigen Dachseiten und der Grundfläche bestimmen. |2=Sprinteraufgabe |3=Sprinteraufgabe verbergen}} | ||
Zeile 142: | Zeile 144: | ||
Da es sich bei dem Dach um einen begrenzten Teil der Ebene handelt, muss zunächst betrachtet werden, für welche Werte von <math>s,t</math> der Storch sich auf dem Dach befände. Da die Spannvektoren bereits jeweils die Strecke zu den äußersten Punkten der Ebene beschreiben und diese durch eine Gerade, in dem Fall der Dachkante, verbunden sind, muss gelten: <math>s+t\le1</math>. In dem Fall also: <math>0{,}5+0{,}5=1</math>. Der Punkt liegt also genau auf der Kante und somit sitzt der Storch auf dem Dach. | Da es sich bei dem Dach um einen begrenzten Teil der Ebene handelt, muss zunächst betrachtet werden, für welche Werte von <math>s,t</math> der Storch sich auf dem Dach befände. Da die Spannvektoren bereits jeweils die Strecke zu den äußersten Punkten der Ebene beschreiben und diese durch eine Gerade, in dem Fall der Dachkante, verbunden sind, muss gelten: <math>s+t\le1</math>. In dem Fall also: <math>0{,}5+0{,}5=1</math>. Der Punkt liegt also genau auf der Kante und somit sitzt der Storch auf dem Dach. | ||
Alternativ könnte man es sich geometrisch veranschaulichen, beispielsweise mithilfe von | Alternativ könnte man es sich geometrisch veranschaulichen, beispielsweise mithilfe von GeoGebra: | ||
[[Datei:Geogebra Lösung Aufgabe Storch.jpg|zentriert|rahmenlos|100%]] | [[Datei:Geogebra Lösung Aufgabe Storch.jpg|zentriert|rahmenlos|100%]] | ||
Version vom 27. Mai 2021, 09:03 Uhr
Die Parameterform und die Punktprobe
Die Punktprobe
Spurpunkte
⭐ Normalenvektor
⭐ Normalenform und Koordinatenform von Ebenengleichungen
⭐Überführung der Parameterform in die Koordinatenform