Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 9: | Zeile 9: | ||
==Die Parameterform und die Punktprobe== | ==Die Parameterform und die Punktprobe== | ||
{{Box|Merksatz: Die Parameterform|{{Lösung versteckt|1= Eine Ebene <math>E</math> ist bestimmt durch einen Punkt A und zwei Vektoren <math>\vec {u} \neq | {{Box|Merksatz: Die Parameterform|{{Lösung versteckt|1= Eine Ebene <math>E</math> ist bestimmt durch einen Punkt <math>A</math> und zwei Vektoren <math>\vec {u} \neq \vec{o}</math> und <math>\vec{v} \neq \vec{o}</math>, die nicht parallel zueinander sind. | ||
Diese Ebene <math>E</math> kann wie folgt beschrieben werden: <math>E:\vec{x}=\vec{OA}+s \cdot \vec{u} +t\cdot \vec{v} </math> | Diese Ebene <math>E</math> kann wie folgt beschrieben werden: <math>E:\vec{x}=\vec{OA}+s \cdot \vec{u} +t\cdot \vec{v} </math> | ||
Zeile 15: | Zeile 15: | ||
Diese Vektorgleichung bezeichnet man als '''Parameterdarstellung/Parametergleichung''' der Ebene <math>E</math> mit den Parameter <math>s</math> und <math>t</math>. | Diese Vektorgleichung bezeichnet man als '''Parameterdarstellung/Parametergleichung''' der Ebene <math>E</math> mit den Parameter <math>s</math> und <math>t</math>. | ||
Um eine Parameterdarstellung aufzustellen | Um eine Parameterdarstellung aufzustellen, können, statt eines Punktes und zwei Vektoren auch: | ||
* drei Punkte, die nicht alle auf einer Geraden liegen | * drei Punkte, die nicht alle auf einer Geraden liegen, oder | ||
* Gerade und Punkt | * eine Gerade und ein Punkt, der nicht auf der Geraden liegt, oder | ||
* zwei sich schneidende Geraden | * zwei sich schneidende Geraden, oder | ||
* zwei parallele Geraden | * zwei echt parallele Geraden, genutzt werden. | ||
| 2=Infobox | 3=Einklappen}}|Merksatz}} | | 2=Infobox | 3=Einklappen}}|Merksatz}} | ||
Version vom 27. Mai 2021, 08:35 Uhr
Die Parameterform und die Punktprobe
Die Punktprobe
Spurpunkte
⭐ Normalenvektor
⭐ Normalenform und Koordinatenform von Ebenengleichungen
⭐Überführung der Parameterform in die Koordinatenform