Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Marie (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 397: | Zeile 397: | ||
'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf. | '''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf. | ||
<math>\begin{vmatrix} 1+ | <math>\begin{vmatrix} 1+s+3t=1+2r+5u \\ 4-2s+t=2+3r+4u \\ s-t=3-2r-3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -s+3t-2r+5u=0 \\ {-}2s+t-3r-4u=-2 \\ s-t+2r+3u=3 \end{vmatrix}</math> | ||
Zeile 434: | Zeile 434: | ||
====⭐Ebenengleichungen in Parameter- und Koordinatenform==== | ====⭐Ebenengleichungen in Parameter- und Koordinatenform==== | ||
{{Box|Merke: Lagebeziehung von | {{Box|⭐Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen | | ||
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]] | [[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]] | ||
|Merksatz}} | |Merksatz}} | ||
{{Box | Beispiel: Untersuchung der Lagebeziehung von | {{Box | ⭐Beispiel: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform | | ||
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>. | Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>. | ||
Zeile 444: | Zeile 444: | ||
'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{ | '''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen. | ||
Hierfür muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>. | Hierfür muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>. | ||
Zeile 454: | Zeile 454: | ||
'''2.Schritt:''' Interpretiere die Lösung | '''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte: | ||
Da | Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind. | ||
Zeile 462: | Zeile 462: | ||
'''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe. | '''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe. | ||
Setze hierfür den | Setze hierfür den Aufpunkt der Ebene <math>E</math> in die Ebenengleichung der Ebene <math>F</math> ein. | ||
<math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\ | <math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5 \checkmark</math> | ||
'''4. Schritt:''' Interpretiere die Lösung der Punktprobe. | '''4. Schritt:''' Interpretiere die Lösung der Punktprobe. | ||
Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt <math>E</math> | Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind. | ||
| Hervorhebung1}} | | Hervorhebung1}} | ||
{{Box|Aufgabe 10: Lagebeziehungen | {{Box|⭐Aufgabe 10: Lagebeziehungen untersuchen.| | ||
Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen. | |||
Zeile 484: | Zeile 483: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{ | Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen. | ||
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 0\\ {-}1\\ 2 \end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=-7</math> | <math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 0\\ {-}1\\ 2 \end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=-7</math> | ||
Da das Skalarprodukt des ersten Richtungsvektors bereits <math>\neq0</math> ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden. | |||
Da das Skalarprodukt | |||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 500: | Zeile 497: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{ | Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{n}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen. | ||
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math> | <math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math> | ||
Zeile 508: | Zeile 505: | ||
Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander. | Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander. | ||
Punktprobe:<math>-3\cdot{-}3-9\cdot1-0=-18\neq5</math> | Punktprobe:<math>-3\cdot({-}3)-9\cdot1-0=-18\neq5</math> | ||
Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander. | Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander. | ||
Zeile 537: | Zeile 534: | ||
====⭐Beide Ebenengleichungen in Koordinatenform==== | ====⭐Beide Ebenengleichungen in Koordinatenform==== | ||
{{Box|Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform | | {{Box|⭐Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform | | ||
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]] | [[Datei:Vorgehen zur Untersuchung der Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]] | ||
|Merksatz}} | |Merksatz}} | ||
{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform | | {{Box | ⭐Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform | | ||
Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen. | Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen. | ||
Zeile 573: | Zeile 570: | ||
<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>| Hervorhebung1}} | <math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>| Hervorhebung1}} | ||
{{Box|Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform | | {{Box|⭐Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform | | ||
Gegeben ist eine Ebene <math>E\colon | Gegeben ist eine Ebene <math>E\colon -2x_1-3x_2+x_3=2</math>. Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld. | ||
{{LearningApp|width=100%|height=500px|app=pq97ryxmn21}} | {{LearningApp|width=100%|height=500px|app=pq97ryxmn21}} | ||
Zeile 589: | Zeile 586: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box|Aufgabe 12: Schnitt von zwei Zeltflächen| | {{Box|⭐Aufgabe 12: Schnitt von zwei Zeltflächen| | ||
Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1</math>-<math>x_2</math> -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht? | Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1</math>-<math>x_2</math> -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht? |
Version vom 22. Mai 2021, 10:51 Uhr
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene