Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Marie (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Marie (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 94: | Zeile 94: | ||
{{Box | Aufgabe 3: Schatten eines Sonnensegels | | {{Box | Aufgabe 3: Schatten eines Sonnensegels | | ||
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A = (9|{-}5|7), B= (6|{-}5|7)</math> und <math>C = (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math>S = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>. In welchem Bereich hat Frau Meier nun Schatten? | Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A = (9|{-}5|7), B= (6|{-}5|7)</math> und <math>C = (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die <math>x_1- x_2</math>-Ebene. Die Sonne scheint aus Richtung <math>S = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>. In welchem Bereich hat Frau Meier nun Schatten? | ||
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= Der Schatten liegt auf der <math>x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}} | {{Lösung versteckt|1= Der Schatten liegt auf der <math>x_1</math>-<math>x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)</math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}} | ||
{{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | {{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>, | ||
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | <math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>, | ||
<math>h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math> | <math>h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math> | ||
'''2. Schritt:''' Berechne die Schnittpunkte der Geraden mit der <math>x_1-x_2</math>-Ebene. Da du weißt, dass jeder Punkt in dieser Ebene von der Form <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist, kannst du diesen Punkt mit der Geradengleichung gleichsetzen. | '''2. Schritt:''' Berechne die Schnittpunkte der Geraden mit der <math>x_1-x_2</math>-Ebene. Da du weißt, dass jeder Punkt in dieser Ebene von der Form <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist, kannst du diesen Punkt mit der Geradengleichung gleichsetzen. | ||
Zeile 109: | Zeile 109: | ||
<math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=9-2r \\ x_2=-5-2r \\ 0=7-10r \end{vmatrix} \Rightarrow x_1=\frac{-63}{5}, x_2 = \frac{-32}{5}, r= \frac{7}{10} \Rightarrow A'=\left( \begin{matrix} \frac{-63}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right)</math>. | <math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=9-2r \\ x_2=-5-2r \\ 0=7-10r \end{vmatrix} \Rightarrow x_1=\frac{-63}{5}, x_2 = \frac{-32}{5}, r= \frac{7}{10} \Rightarrow A'=\left( \begin{matrix} \frac{-63}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right)</math>. | ||
Berechnung von <math>B' </math>: | Berechnung von <math>B'</math>: | ||
<math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=6-2s \\ x_2=-5-2s \\ 0=7-10s \end{vmatrix} \Rightarrow x_1=\frac{-42}{5}, x_2 = \frac{-32}{5}, r= \frac{7}{10} \Rightarrow B'=\left( \begin{matrix} \frac{-42}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right)</math>. | <math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=6-2s \\ x_2=-5-2s \\ 0=7-10s \end{vmatrix} \Rightarrow x_1=\frac{-42}{5}, x_2 = \frac{-32}{5}, r= \frac{7}{10} \Rightarrow B'=\left( \begin{matrix} \frac{-42}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right)</math>. | ||
Berechnung von <math>C' </math>: | Berechnung von <math>C'</math>: | ||
<math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=7-2t \\ x_2=-10-2t \\ 0=11-10t \end{vmatrix} \Rightarrow x_1=\frac{-77}{5}, x_2 = \frac{-61}{5}, t= \frac{11}{10} \Rightarrow C'=\left( \begin{matrix} \frac{-77}{5}\\ \frac{-61}{5}\\ 0 \end{matrix} \right)</math>. | <math>\left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) \Rightarrow \begin{vmatrix} x_1=7-2t \\ x_2=-10-2t \\ 0=11-10t \end{vmatrix} \Rightarrow x_1=\frac{-77}{5}, x_2 = \frac{-61}{5}, t= \frac{11}{10} \Rightarrow C'=\left( \begin{matrix} \frac{-77}{5}\\ \frac{-61}{5}\\ 0 \end{matrix} \right)</math>. | ||
Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten <math>A'=\left( \begin{matrix} \frac{-63}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right), B'=\left( \begin{matrix} \frac{-42}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right) </math> und <math>C'=\left( \begin{matrix} \frac{-77}{5}\\ \frac{-61}{5}\\ 0 \end{matrix} \right)</math> begrenzt. | Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten <math>A'=\left( \begin{matrix} \frac{-63}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right), B'=\left( \begin{matrix} \frac{-42}{5}\\ \frac{-32}{5}\\ 0 \end{matrix} \right)</math> und <math>C'=\left( \begin{matrix} \frac{-77}{5}\\ \frac{-61}{5}\\ 0 \end{matrix} \right)</math> begrenzt. | ||
|2= Lösung anzeigen| 3= Lösung verbergen}} | |2= Lösung anzeigen| 3= Lösung verbergen}} | ||
Zeile 157: | Zeile 157: | ||
'''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt: <math>2 \cdot 3 -2 =5 \Rightarrow 4 \neq 5 </math> | '''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt: <math>2 \cdot 3 -2 =5 \Rightarrow 4 \neq 5</math> | ||
<math>\Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander. | <math>\Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander. | ||
Zeile 172: | Zeile 172: | ||
{{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}} | {{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= <math>\vec{u} \ast \vec{n} = \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 8-m </math>. | {{Lösung versteckt|1= <math>\vec{u} \ast \vec{n} = \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 8-m </math>. | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math>0</math> sein: <math>8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math>0</math> sein: <math>8-m = 0 \Rightarrow m = 8</math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
b) Die Gerade <math>h\colon \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) </math> soll in der Ebene <math>E</math> liegen. | b) Die Gerade <math>h\colon \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right)</math> soll in der Ebene <math>E</math> liegen. | ||
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
Zeile 181: | Zeile 181: | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math>0</math> sein: <math>3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5}</math>. | Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math>0</math> sein: <math>3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5}</math>. | ||
'''Finde danach <math>l</math> durch eine Punktprobe:''' Setze <math>\vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math>-2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>. |2=Lösung anzeigen|3=Lösung verbergen}} | '''Finde danach <math>l</math> durch eine Punktprobe:''' Setze <math>\vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right)</math> in die Ebenengleichung ein und löse nach l auf: <math>-2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
c) Die Gerade <math>i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right)</math> soll die Ebene <math>E</math> schneiden. | c) Die Gerade <math>i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right)</math> soll die Ebene <math>E</math> schneiden. | ||
Zeile 190: | Zeile 190: | ||
{{Box|⭐ Aufgabe 5: Beamer | | {{Box|⭐ Aufgabe 5: Beamer | | ||
Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math>E\colon x_2 + 3x_3 = 2 </math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} {-}5\\ 1 \frac{3}{2} \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) </math> modelliert. | Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math>E\colon x_2 + 3x_3 = 2</math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} {-}5\\ 1 \frac{3}{2} \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right)</math> modelliert. | ||
Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft. | Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft. | ||
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}} | {{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}} | ||
Zeile 274: | Zeile 274: | ||
{{Box | Aufgabe 7: Gerade gesucht | | {{Box | Aufgabe 7: Gerade gesucht | | ||
Eine Gerade <math>g</math> soll die <math>x_1-x_2</math>-Ebene in einem Winkel von <math>45^{\circ}</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3)</math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf. | Eine Gerade <math>g</math> soll die <math>x_1</math>-<math>x_2</math>-Ebene in einem Winkel von <math>45^{\circ}</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3)</math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf. | ||
{{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1=Der Normalenvektor der <math>x_1-x_2</math> -Ebene verläuft nur in <math>x_3</math>-Richtung.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1=Der Normalenvektor der <math>x_1</math>-<math>x_2</math> -Ebene verläuft nur in <math>x_3</math>-Richtung.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1=Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}} | {{Lösung versteckt|1=Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}} | ||
Zeile 439: | Zeile 439: | ||
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} 1\\ 0\\ 0\end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=7</math> | <math>\vec{n} \ast \vec{v}=\left( \begin{matrix} 1\\ 0\\ 0\end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=7</math> | ||
Da das Skalarprodukt der Vektoren <math> | Da das Skalarprodukt der Vektoren <math>\neq0</math> ist, liegen sie nicht orthogonal zueinander. Somit schneiden sich die Ebenen in einer Schnittgeraden. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 457: | Zeile 457: | ||
Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander. | Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander. | ||
Punktprobe:<math>-3\cdot{-}3-9\cdot1-0=- | Punktprobe:<math>-3\cdot{-}3-9\cdot1-0=-18\neq5</math> | ||
Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander. | Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander. |
Version vom 9. Mai 2021, 20:19 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene