Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 233: | Zeile 233: | ||
<math>\vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right)</math> und <math>\vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right)</math> | <math>\vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right)</math> und <math>\vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right)</math> | ||
'''2. Schritt''': Setze die Vektoren in die Formel <math>\sin(\alpha)=\frac{ \vec{n} \ast \vec{u}}{|\vec{n}| \cdot |\vec{u}|</math> ein. | '''2. Schritt''': Setze die Vektoren in die Formel <math>\sin(\alpha)=\frac{ \vec{n} \ast \vec{u}}{|\vec{n}| \cdot |\vec{u}|}</math> ein. | ||
<math>\sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}}</math> | <math>\sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}}</math> | ||
Zeile 663: | Zeile 663: | ||
<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}}</math> | <math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}}</math> | ||
Umstellen der Formel ergibt: <math>\gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ} </math> | Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math> | ||
Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^ | Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' | '''b)''' | ||
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math>S_2\colon \vec{x} = \begin{pmatrix} 0 \\ 0{,}8 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0{,}4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}</math> und die Rückenlehne der Ebene <math>R_2\colon -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | ||
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math> S_2\colon \vec{x} = \begin{pmatrix} 0 \\ 0{,}8 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0{,}4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}</math> und die Rückenlehne der Ebene <math> R_2\colon -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen. | |||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 685: | Zeile 687: | ||
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | <math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | ||
Umstellen der Formel ergibt: <math>\beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ}</math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün}}}} | | Arbeitsmethode | Farbe={{Farbe|grün}}}} |
Version vom 9. Mai 2021, 19:42 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene