Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 85: | Zeile 85: | ||
{{Box | 1= Beispiel: Punktprobe | 2= | {{Box | 1= Beispiel: Punktprobe | 2= | ||
Liegt der Punkt <math>A({-}1 | Liegt der Punkt <math>A({-}1|1|{-}1)</math> in der Ebene <math>E:\vec{x}=\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}+s \cdot \begin{pmatrix} {-}2 \\ 0 \\ 3 \end{pmatrix} +t\cdot \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} </math>? | ||
Wenn ja, dann müsste der zu <math>A</math> gehörende Ortsvektor <math>\vec{OA} = \begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}</math> die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen <math>r,s</math> geben, für die gilt: | Wenn ja, dann müsste der zu <math>A</math> gehörende Ortsvektor <math>\vec{OA} = \begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}</math> die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen <math>r,s</math> geben, für die gilt: | ||
Zeile 107: | Zeile 107: | ||
Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von <math>12</math>m. | Das Dach einer Kirche hat die Form einer geraden quadratischen Pyramide mit einer Höhe von <math>12</math>m. | ||
<math>A(0 | <math>A(0|0|0)</math> sind die Koordinaten einer Ecke der Grundfläche des Daches. Die gegenüberliegende Ecke <math>C</math> der Grundfläche hat die Koordinaten <math>C(6|6|0)</math>. | ||
'''a)''' Bestimme die Koordinaten der fehlenden Eckpunkte <math>B</math> und <math>D</math>, sowie der Dachspitze <math>S</math>. Stelle die Ebenengleichung der Ebene <math>E</math> auf, in der die Punkte <math>B</math>, <math>C</math> und <math>S</math> liegen. | '''a)''' Bestimme die Koordinaten der fehlenden Eckpunkte <math>B</math> und <math>D</math>, sowie der Dachspitze <math>S</math>. Stelle die Ebenengleichung der Ebene <math>E</math> auf, in der die Punkte <math>B</math>, <math>C</math> und <math>S</math> liegen. | ||
Zeile 113: | Zeile 113: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Die Punkte haben die folgenden Koordinaten: | Die Punkte haben die folgenden Koordinaten: | ||
Punkt <math>B (6 | Punkt <math>B (6|0|0)</math> | ||
Punkt <math>D (0 | Punkt <math>D (0|6|0)</math> | ||
Punkt <math>S (3 | Punkt <math>S (3|3|12)</math>. | ||
Die Koordinaten des Punktes <math>S</math> kannst du bestimmen, in dem du annimmst, dass die Spitze mittig auf der Grundfläche steht. Die <math>x_1</math>-Koordinate kann somit durch <math>\frac{1}{2} \cdot \vec{AB}</math> berechnet werden und die <math>x_2</math>-Koordinate durch <math>\frac{1}{2} \cdot \vec{BC}</math>. Alternativ könntest du auch die <math>x_1</math>- und die <math>x_2</math>-Koordinate mithilfe der Diagonalen, also <math>\frac{1}{2} \cdot \vec{AC}</math> berechnen. | Die Koordinaten des Punktes <math>S</math> kannst du bestimmen, in dem du annimmst, dass die Spitze mittig auf der Grundfläche steht. Die <math>x_1</math>-Koordinate kann somit durch <math>\frac{1}{2} \cdot \vec{AB}</math> berechnet werden und die <math>x_2</math>-Koordinate durch <math>\frac{1}{2} \cdot \vec{BC}</math>. Alternativ könntest du auch die <math>x_1</math>- und die <math>x_2</math>-Koordinate mithilfe der Diagonalen, also <math>\frac{1}{2} \cdot \vec{AC}</math> berechnen. | ||
Zeile 124: | Zeile 124: | ||
'''b)''' Der Naturschutzbund NABU hat bei verschiedenen Störchen Peilsender am Fuß angebracht, die dauerhaft den Standort der Tiere übermitteln. Sie haben für einen der Störche die Koordinaten <math>(4{,}5 | '''b)''' Der Naturschutzbund NABU hat bei verschiedenen Störchen Peilsender am Fuß angebracht, die dauerhaft den Standort der Tiere übermitteln. Sie haben für einen der Störche die Koordinaten <math>(4{,}5| 4{,}5| 6)</math> übermittelt. Befindet sich der Storch in der Ebene der in a) errechneten Ebene? | ||
Beurteile, ob der Storch auf dem Dach sitzt. | Beurteile, ob der Storch auf dem Dach sitzt. | ||
Version vom 9. Mai 2021, 19:11 Uhr
Die Parameterform und die Punktprobe
Die Punktprobe
Spurpunkte
{{Box | Aufgabe 8: Spurpunkte berechnen | Gib die Schnittpunkte der Geraden g mit den Koordinatenebenen an (Spurpunkte der Geraden)
a)
b)
{{Box | Aufgabe 9: Spurpunkte berechnen (Textaufgabe) | In einem Koordinatensystem mit der Einheit m (Meter) befindet sich ein U-Boot im Punkt und taucht auf einem Kurs in Richtung des Vektors nach oben auf. In welchem Punkt erreicht das U-Boot die Meeresoberfläche, wenn es seinen Kurs beibehält?
⭐ Normalenvektor
⭐ Normalenform und Koordinatenform von Ebenengleichungen
⭐Überführung der Parameterform in die Koordinatenform