Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 72: | Zeile 72: | ||
'''5. Schritt:''' Da sich die Ebene <math>E</math> und die Gerade <math>g</math> schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter <math>r</math> in die Geradengleichung ein: | '''5. Schritt:''' Da sich die Ebene <math>E</math> und die Gerade <math>g</math> schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter <math>r</math> in die Geradengleichung ein: <math>\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) = \left( \begin{matrix} 1\\ {-}2\\ 2 \end{matrix} \right) </math> | ||
Alternativ kannst du die Parameter <math>s</math> und <math>t</math> in die Ebenengleichung einsetzen und erhältst den gleichen Punkt. | Alternativ kannst du die Parameter <math>s</math> und <math>t</math> in die Ebenengleichung einsetzen und erhältst den gleichen Punkt. | ||
Zeile 157: | Zeile 157: | ||
'''2. Schritt:''' | '''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt: <math> 2 \cdot 3 -2 =5 \Rightarrow 4 \neq 5 </math> | ||
<math> \Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math> g </math> und die Ebene <math>E</math> parallel zueinander. | <math> \Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math> g </math> und die Ebene <math>E</math> parallel zueinander. | ||
Zeile 177: | Zeile 177: | ||
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Stützvektor von <math>g</math> in der Ebene | {{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Stützvektor von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5} </math>. | {{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5} </math>. | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5} </math>. | Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5} </math>. | ||
'''Finde danach <math>l</math> durch eine Punktprobe:''' | '''Finde danach <math>l</math> durch eine Punktprobe:''' Setze <math> \vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math> -2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
c) Die Gerade <math> i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden. | c) Die Gerade <math> i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden. | ||
Zeile 195: | Zeile 195: | ||
{{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein: <math> -5 + 2s + 3(\frac{3}{2} + \frac{1}{2}s) = 2 \Leftrightarrow s \approx 0{,}71 </math> | {{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein: <math> -5 + 2s + 3(\frac{3}{2} + \frac{1}{2}s) = 2 \Leftrightarrow s \approx 0{,}71 </math> | ||
Berechne den Schnittpunkt, indem du <math>s</math> in die Geradengleichung einsetzt: <math>\left( \begin{matrix} 7\\ {-}5\\ \frac{3}{2} \end{matrix} \right) + 0{,}71 \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) = \left( \begin{matrix} 7{,}71\\ {-}3{,}58\\ 1{,}86 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}} | Berechne den Schnittpunkt, indem du <math>s</math> in die Geradengleichung einsetzt: <math>\left( \begin{matrix} 7\\ {-}5\\ \frac{3}{2} \end{matrix} \right) + 0{,}71 \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) = \left( \begin{matrix} 7{,}71\\ {-}3{,}58\\ 1{,}86 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|orange}}}} | | Arbeitsmethode | Farbe={{Farbe|orange}}}} | ||
Zeile 202: | Zeile 202: | ||
{{Box | Merke: Berechnung des Winkels zwischen Gerade und Ebene | | {{Box | Merke: Berechnung des Winkels zwischen Gerade und Ebene | | ||
Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]] | Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]] | Merksatz}} | ||
{{Box | Merksatz: Winkel berechnen zwischen Gerade und Ebene | | {{Box | Merksatz: Winkel berechnen zwischen Gerade und Ebene | | ||
Zeile 208: | Zeile 208: | ||
[[Datei:Abbildung Winkel zwischen Gerade und Ebene .jpg| rechts | mini |Abbildung: Winkel zwischen Gerade und Ebene]] | [[Datei:Abbildung Winkel zwischen Gerade und Ebene .jpg| rechts | mini |Abbildung: Winkel zwischen Gerade und Ebene]] | ||
Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math> sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>. | Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math> \sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>. | ||
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen. | Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen. | ||
Zeile 229: | Zeile 229: | ||
Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E: 2x_1 + x_2 + 4 x_3 = {-}27 </math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden. | Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E: 2x_1 + x_2 + 4 x_3 = {-}27 </math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden. | ||
'''1. | '''1. Schritt''': Notiere den Richtungvektor <math> \vec{u} </math> der Gerade und den Normalenvektor <math> \vec{n} </math> der Ebene. | ||
<math> \vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und <math> \vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right) </math> | <math> \vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und <math> \vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right) </math> | ||
'''2. | '''2. Schritt''': Setze die Vektoren in die Formel <math> \sin(\alpha)=\frac{ \vec{n} \ast \vec{u}}{|\vec{n}| \cdot |\vec{u}|}</math> ein. | ||
<math> sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} | <math> \sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}} </math> | ||
'''3. Schritt''': Forme die Gleichung um. | '''3. Schritt''': Forme die Gleichung um. | ||
Zeile 249: | Zeile 249: | ||
Eine Schulklasse nimmt auf ihrem Wandertag viele Trinkpäckchen mit. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die letzte Ecke kommen. Berechne den Winkel, in dem die Kinder den Strohhalm halten müssen, um auch an den Saft in der letzten Ecke zu kommen. | Eine Schulklasse nimmt auf ihrem Wandertag viele Trinkpäckchen mit. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die letzte Ecke kommen. Berechne den Winkel, in dem die Kinder den Strohhalm halten müssen, um auch an den Saft in der letzten Ecke zu kommen. | ||
Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene | Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene <math>F: x_1=5 </math> beschrieben werden. | ||
Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der hintersten Ecke anstößt, kann er durch die Gerade <math>g </math> veranschaulicht werden: <math> g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. | Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der hintersten Ecke anstößt, kann er durch die Gerade <math>g </math> veranschaulicht werden: <math> g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. | ||
Zeile 259: | Zeile 259: | ||
Einsetzen der Vektoren in die Formel liefert: | Einsetzen der Vektoren in die Formel liefert: | ||
<math> sin(\alpha)=\frac{ \left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \ast \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|} | <math> \sin(\alpha)=\frac{ \left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \ast \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{5}{\sqrt{1} \cdot \sqrt{25+36+121}} \Leftrightarrow \sin(\alpha)=\frac{1}{\sqrt{182}} </math> | ||
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden: | Mithilfe des Taschenrechners kann das Ergebnis berechnet werden: | ||
Zeile 269: | Zeile 269: | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
{{Box | Aufgabe 7: Gerade gesucht | | {{Box | Aufgabe 7: Gerade gesucht | | ||
Eine Gerade <math>g</math> soll die <math>x_1-x_2</math>-Ebene | Eine Gerade <math>g</math> soll die <math>x_1-x_2</math>-Ebene in einem Winkel von <math>45 ^\circ</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3) </math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf. | ||
{{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
Zeile 286: | Zeile 286: | ||
Bestimme dafür zuerst den Normalenvektor der Ebene. Da es sich um die <math>x_1-x_2</math> -Ebene handelt, lautet der Normalenvektor <math>\vec{n}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}</math>. | Bestimme dafür zuerst den Normalenvektor der Ebene. Da es sich um die <math>x_1-x_2</math> -Ebene handelt, lautet der Normalenvektor <math>\vec{n}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}</math>. | ||
Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden: <math> sin(45)=\frac{ \left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|} | Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden: <math> \sin(45)=\frac{ \left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|} \Leftrightarrow \sin(45)=\frac{z}{\sqrt{1} \cdot \sqrt{9+36 + z^{2}}} \Leftrightarrow \sin(45)=\frac{z}{\sqrt{45+z^{2}}} </math> | ||
Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: <math>z=3 \sqrt{5} \approx 6,71</math>. | Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: <math>z=3 \sqrt{5} \approx 6,71</math>. | ||
Zeile 346: | Zeile 346: | ||
'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf. | '''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf. | ||
<math> \begin{vmatrix} 1+k+3l=1+2r+5s \\ 4-2k+l=2+3r+4s \\ k-l=3-2r-3s \end{vmatrix} | <math> \begin{vmatrix} 1+k+3l=1+2r+5s \\ 4-2k+l=2+3r+4s \\ k-l=3-2r-3s \end{vmatrix} \Leftrightarrow \begin{vmatrix} -k+3l-2r+5s=0 \\ {-}2k+l-3r-4s=-2 \\ k-l+2r+3s=3 \end{vmatrix}</math> | ||
Zeile 368: | Zeile 368: | ||
'''a)''' <math>\begin{vmatrix} 1 & 0 & 0 & -0,5 & 0,5 \\ 0 & 1 & 0 & -1 & 0,5 \\ 0 & 0 & 1 & 1,5 & 1 \end{vmatrix}</math> | '''a)''' <math>\begin{vmatrix} 1 & 0 & 0 & -0,5 & 0,5 \\ 0 & 1 & 0 & -1 & 0,5 \\ 0 & 0 & 1 & 1,5 & 1 \end{vmatrix}</math> | ||
{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da sich in jeder Zeile der Diagonalform Einträge befinden, ist nur ein Parameter frei wählbar und die Ebenen schneiden sich in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da sich in jeder Zeile der Diagonalform Einträge befinden, ist nur ein Parameter frei wählbar und die Ebenen schneiden sich in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' <math>\begin{vmatrix} 1 & 0 & -1 & -1 & 2 \\ 0 & 1 & -1 & -3 & -5 \\ 0 & 0 & 0 & 0 & -5 \end{vmatrix}</math> | '''b)''' <math>\begin{vmatrix} 1 & 0 & -1 & -1 & 2 \\ 0 & 1 & -1 & -3 & -5 \\ 0 & 0 & 0 & 0 & -5 \end{vmatrix}</math> | ||
{{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung, da dsich in der dritten Zeile ein Widerspruch befindet. Die Ebenen liegen also parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung, da dsich in der dritten Zeile ein Widerspruch befindet. Die Ebenen liegen also parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''c)''' <math>\begin{vmatrix} 1 & 3 & -2 & -5 & 3 \\ 0 & 7 & -7 & 14 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix}</math> | '''c)''' <math>\begin{vmatrix} 1 & 3 & -2 & -5 & 3 \\ 0 & 7 & -7 & 14 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix}</math> | ||
{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da die dritte Zeile nur aus Nullen besteht, sind zwei Parameter frei wählbar und die Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da die dritte Zeile nur aus Nullen besteht, sind zwei Parameter frei wählbar und die Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 441: | Zeile 441: | ||
{{Lösung versteckt|1= parallel|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1= parallel|2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''c)''' <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ {-}1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ 0{,}5 \end{pmatrix}+ s \cdot \begin{pmatrix} 4 \\ {-}2 \\ 1 \end{pmatrix} </math> | '''c)''' <math>E\colon \vec{x} = \begin{pmatrix} 2 \\ {-}1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ 0{,}5 \end{pmatrix}+ s \cdot \begin{pmatrix} 4 \\ {-}2 \\ 1 \end{pmatrix} </math> | ||
<math>F: 2x_1-2x_2-4x_3=-6 </math> | <math>F: 2x_1-2x_2-4x_3=-6 </math> | ||
Zeile 474: | Zeile 474: | ||
Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner. | Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner. | ||
<math> \begin{vmatrix} 3 & -4 & -1 & 4 \\ 3 & -3 & 1 & 3 \end{vmatrix} | <math> \begin{vmatrix} 3 & -4 & -1 & 4 \\ 3 & -3 & 1 & 3 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 3 & -4 & -1 & 4 \\ 0 & 1 & 2 & -1 \end{vmatrix}</math> | ||
Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>. | Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>. | ||
Zeile 516: | Zeile 516: | ||
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS: | Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS: | ||
<math> \begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} | <math> \begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}</math> | ||
<math> \begin{vmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 3 & 6 \\ 4 & 0 & 0 & 4 & 0\end{vmatrix} </math> | <math> \begin{vmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 3 & 6 \\ 4 & 0 & 0 & 4 & 0\end{vmatrix} </math> | ||
Zeile 543: | Zeile 543: | ||
[[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini |Abbildung: Winkel zwischen zwei Ebenen]] | [[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini |Abbildung: Winkel zwischen zwei Ebenen]] | ||
Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>. | Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math> \cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>. | ||
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.| Merksatz}} | Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0 ^{\circ}</math> und <math>90 ^{\circ}</math> liegen. Ist dein berechneter Winkel <math> \alpha > 90 ^{\circ}</math>, so musst du <math> 180 ^{\circ} - \alpha </math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.| Merksatz}} | ||
Zeile 557: | Zeile 557: | ||
'''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | '''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel. | ||
<math> cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow cos(\alpha) = \frac{16}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow cos(\alpha) = \frac{16}{3 \cdot \sqrt{59}} </math> | <math> \cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{16}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow \cos(\alpha) = \frac{16}{3 \cdot \sqrt{59}} </math> | ||
'''3. Schritt:''' Auflösen der Gleichung. | '''3. Schritt:''' Auflösen der Gleichung. | ||
Zeile 567: | Zeile 567: | ||
Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> , | Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> , | ||
<math>F</math> eine Ebene mit <math>F | <math>F</math> eine Ebene mit <math>F\colon 2x_1+6x_2-4x_3=2</math>. | ||
und <math>H</math> eine Ebene mit <math>H: 2x_1+4x_2-7x_3=13 </math> . | und <math>H</math> eine Ebene mit <math>H: 2x_1+4x_2-7x_3=13 </math> . | ||
Zeile 578: | Zeile 578: | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math>cos(\alpha) = \frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|} \Leftrightarrow cos(\alpha) = \frac{|4|}{\sqrt{1} \cdot \sqrt{4+36+16}} \Leftrightarrow cos(\alpha) = \frac{4}{\sqrt{56}}</math> | <math>\cos(\alpha) = \frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{|4|}{\sqrt{1} \cdot \sqrt{4+36+16}} \Leftrightarrow \cos(\alpha) = \frac{4}{\sqrt{56}}</math> | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
Zeile 594: | Zeile 594: | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math>cos(\alpha) = \frac{ \left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow cos(\alpha) = \frac{0}{\sqrt{4+36+16} \cdot \sqrt{4+16+49}} \Leftrightarrow cos(\alpha) = \frac{0}{\sqrt{3864}} \Leftrightarrow cos(\alpha) = 0</math>. | <math>\cos(\alpha) = \frac{ \left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{0}{\sqrt{4+36+16} \cdot \sqrt{4+16+49}} \Leftrightarrow \cos(\alpha) = \frac{0}{\sqrt{3864}} \Leftrightarrow \cos(\alpha) = 0</math>. | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
Zeile 610: | Zeile 610: | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math>cos(\alpha) = \frac{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right| }{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow cos(\alpha) = \frac{|-7|}{\sqrt{1} \cdot \sqrt{4+16+49}} \Leftrightarrow cos(\alpha) = \frac{7}{\sqrt{69}}</math> | <math>\cos(\alpha) = \frac{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right| }{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{|-7|}{\sqrt{1} \cdot \sqrt{4+16+49}} \Leftrightarrow \cos(\alpha) = \frac{7}{\sqrt{69}}</math> | ||
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden: | ||
Zeile 656: | Zeile 656: | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math> cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | <math> \cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} </math> | ||
Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2 ^\circ </math> | ||
Wie in der Abbildung zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68{,}2 ^\circ = 111{,}8 ^\circ </math>. Mit einem Wert von <math> 111{,}8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | Wie in der Abbildung zu sehen wurde der Winkel <math> \gamma </math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math> \alpha </math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180 ^\circ - \gamma </math> berechnet: <math>180 ^\circ - 68{,}2 ^\circ = 111{,}8 ^\circ </math>. Mit einem Wert von <math> 111{,}8 ^\circ </math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
'''b)''' [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | '''b)''' [[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]] | ||
Zeile 678: | Zeile 678: | ||
Einsetzen in die Formel liefert: | Einsetzen in die Formel liefert: | ||
<math> cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow cos(\beta)=\frac{21}{29}</math> | <math> \cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math> | ||
Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6 ^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6 ^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|grün}}}} | | Arbeitsmethode | Farbe={{Farbe|grün}}}} |
Version vom 9. Mai 2021, 18:52 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Beide Ebenengleichungen in Parameterform
⭐Ebenengleichungen in Parameter- und Koordinatenform
⭐Beide Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene