Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 53: Zeile 53:
{{Box | Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene |  
{{Box | Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene |  


Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math> und eine Gerade <math>g: \vec{x}=\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) </math>. Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.  
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) </math>. Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.  




Zeile 65: Zeile 65:




'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner: <math>s=-1, t=2, r=1 </math>
'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner: <math>s=-1{,} t=2{,} r=1 </math>




Zeile 80: Zeile 80:


{{Box|Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene|
{{Box|Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene|
Gegeben ist eine Ebene <math>E: \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math>. Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.
Gegeben ist eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math>. Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.


{{LearningApp|width=100%|height=500px|app=ph1zptuwk21}}
{{LearningApp|width=100%|height=500px|app=ph1zptuwk21}}
Zeile 99: Zeile 99:
{{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f: \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>,
{{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>,
<math>g: \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>,
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>,
<math>h: \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
<math>h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


'''2. Schritt:''' Berechne die Schnittpunkte der Geraden mit der <math> x_1-x_2</math>-Ebene. Da du weißt, dass jeder Punkt in dieser Ebene von der Form <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist, kannst du diesen Punkt mit der Geradengleichung gleichsetzen.
'''2. Schritt:''' Berechne die Schnittpunkte der Geraden mit der <math> x_1-x_2</math>-Ebene. Da du weißt, dass jeder Punkt in dieser Ebene von der Form <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist, kannst du diesen Punkt mit der Geradengleichung gleichsetzen.
Zeile 149: Zeile 149:
{{Box |&#x2B50; Beispiel: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  
{{Box |&#x2B50; Beispiel: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  


Gegeben sind eine Ebene <math> E: 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math> g: \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
Gegeben sind eine Ebene <math> E\colon 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math> g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.




Zeile 165: Zeile 165:


{{Box|&#x2B50; Aufgabe 4: Bestimme den Parameter |
{{Box|&#x2B50; Aufgabe 4: Bestimme den Parameter |
Gegeben ist eine Ebene <math> E: \vec{x} = -2x_1 + 3x_2 - x_3 = 3 </math>.
Gegeben ist eine Ebene <math> E\colon \vec{x} = -2x_1 + 3x_2 - x_3 = 3 </math>.
Bestimme <math> l </math> und <math> m </math> in den folgenden Geraden so, dass die entsprechende Lagebeziehung erfüllt ist.
Bestimme <math> l </math> und <math> m </math> in den folgenden Geraden so, dass die entsprechende Lagebeziehung erfüllt ist.


a) Die Gerade <math> g: \vec{x} = \left( \begin{matrix} 5\\ 3\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right) </math> soll parallel zur Ebene <math> E </math> verlaufen.
a) Die Gerade <math> g\colon \vec{x} = \left( \begin{matrix} 5\\ 3\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right) </math> soll parallel zur Ebene <math> E </math> verlaufen.


{{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1=Damit die Gerade <math>g</math> und die Ebene <math>E</math> parallel zueinander sind, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp anzeigen|3=Tipp verbergen}}
Zeile 174: Zeile 174:
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}}
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}}


b) Die Gerade <math> h: \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) </math> soll in der Ebene <math> E </math> liegen.  
b) Die Gerade <math> h\colon \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) </math> soll in der Ebene <math> E </math> liegen.  


{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
Zeile 183: Zeile 183:
'''Finde danach <math>l</math> durch eine Punktprobe:'''  Setze <math> \vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math> -2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>.  |2=Lösung anzeigen|3=Lösung verbergen}}
'''Finde danach <math>l</math> durch eine Punktprobe:'''  Setze <math> \vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math> -2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>.  |2=Lösung anzeigen|3=Lösung verbergen}}


c) Die Gerade <math> i: \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden.
c) Die Gerade <math> i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden.


{{Lösung versteckt|1=Es gibt keine eindeutige Lösung! Der Richtungsvektor <math> \vec{u} </math> von <math>g</math> darf nur nicht orthogonal zum Normalenvektor von <math>E</math> liegen. |2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1=Es gibt keine eindeutige Lösung! Der Richtungsvektor <math> \vec{u} </math> von <math>g</math> darf nur nicht orthogonal zum Normalenvektor von <math>E</math> liegen. |2=Tipp anzeigen|3=Tipp verbergen}}
Zeile 190: Zeile 190:


{{Box|&#x2B50; Aufgabe 5: Beamer |  
{{Box|&#x2B50; Aufgabe 5: Beamer |  
Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math> E: x_2 + 3x_3 = 2 </math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math> j: \vec{x} = \left( \begin{matrix} {-}5\\ 1 \frac{3}{2} \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) </math> modelliert.
Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math> E\colon x_2 + 3x_3 = 2 </math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math> j\colon \vec{x} = \left( \begin{matrix} {-}5\\ 1 \frac{3}{2} \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) </math> modelliert.
Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft.
Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft.
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}

Version vom 9. Mai 2021, 18:38 Uhr

Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".

Bauarbeiter.jpg


Info

In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben und Kapitel, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!


Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.

Lagebeziehung Gerade-Ebene

Mögliche Lagebeziehungen zwischen Gerade und Ebene

Merke:

Zwischen einer Geraden und einer Ebene gibt es drei mögliche Lagebeziehungen.

Lagebeziehung Gerade Ebene schneidend.jpg

Lagebeziehung Gerade Ebene parallel.jpg

Lagebeziehung Gerade Ebene liegtin.jpg

Die Gerade schneidet die Ebene.

Die Gerade und die Ebene liegen parallel.

Die Gerade liegt in der Ebene.


Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene



Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Vorgehen Lagebeziehung Gerade und Ebene.jpg


Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene


Gegeben sind eine Ebene und eine Gerade . Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.


1. Schritt: Setze die Geraden- und Ebenengleichung gleich:


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf:


3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:


4. Schritt: Interpretiere die Lösung des Gleichungssystems anhand der Anzahl der Lösungen. Da das Gleichungssystem nur eine Lösung hat, besitzen die Ebene und die Gerade nur einen gemeinsamen Punkt. Also schneidet die Gerade die Ebene.


5. Schritt: Da sich die Ebene und die Gerade schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter in die Geradengleichung ein:

Alternativ kannst du die Parameter und in die Ebenengleichung einsetzen und erhältst den gleichen Punkt.


Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.




Aufgabe 3: Schatten eines Sonnensegels

Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind und . Die Terrasse wird modelliert durch die -Ebene. Die Sonne scheint aus Richtung . In welchem Bereich hat Frau Meier nun Schatten?


⭐Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen

Bei der Bestimmung der Lagebeziehung zwischen einer Gerade und einer Ebene kann dir der Normalenvektor der Ebene helfen.

Lagebeziehung Gerade Ebene parallel Normalenvektor.jpg

Lagebeziehung Gerade Ebene liegtin Normalenvektor.jpg

Lagebeziehung Gerade Ebene schneidend Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene keinen gemeinsamen Punkt besitzen, so sind sie parallel zueinander.

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene unendlich viele gemeinsame Punkte besitzen, so liegt die Gerade in der Ebene.

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene nicht orthogonal zueinander sind, dann schneiden sich die Gerade und die Ebene und es kann ein Schnittpunkt bestimmt werden.


⭐Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene mit dem Normalenvektor
Vorgehen Lagebeziehung Gerade und Ebene3.jpg.jpg


⭐ Beispiel: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform


Gegeben sind eine Ebene und eine Gerade . Bestimme die Lagebeziehung von Gerade und Ebene.


1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt:


2. Schritt: Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt:

Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade und die Ebene parallel zueinander.



⭐ Aufgabe 4: Bestimme den Parameter

Gegeben ist eine Ebene . Bestimme und in den folgenden Geraden so, dass die entsprechende Lagebeziehung erfüllt ist.

a) Die Gerade soll parallel zur Ebene verlaufen.

b) Die Gerade soll in der Ebene liegen.

c) Die Gerade soll die Ebene schneiden.


⭐ Aufgabe 5: Beamer

Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene dargestellt. Der Strahl des Laserpointers wird durch die Gerade modelliert. Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft.


⭐Berechnung des Winkels zwischen Gerade und Ebene

Merke: Berechnung des Winkels zwischen Gerade und Ebene


Wenn eine Gerade eine Ebene schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in Kapitel Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum


Merksatz: Winkel berechnen zwischen Gerade und Ebene


Abbildung: Winkel zwischen Gerade und Ebene

Sei eine Ebene mit dem Normalenvektor und eine Gerade mit dem Richtungsvektor . Der Schnittwinkel zwischen und kann mit folgender Formel berechnet werden: .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel darf also nur zwischen und liegen. Ist dein berechneter Winkel , so musst du berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.

Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen:


Beispiel: Berechnung des Winkels zwischen Gerade und Ebene


Gegeben sind die Gerade und die Ebene . Bestimme den Winkel, unter dem sich die Gerade und die Ebene schneiden.

1. Schritt: Notiere den Richtungvektor der Gerade und den Normalenvektor der Ebene.

und

2. Schritt: Setze die Vektoren in die Formel ein.

3. Schritt: Forme die Gleichung um.

Der Winkel beträgt also .


Aufgabe 6: Trinkpäckchen


Abbildung Trinkpäckchen

Eine Schulklasse nimmt auf ihrem Wandertag viele Trinkpäckchen mit. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die letzte Ecke kommen. Berechne den Winkel, in dem die Kinder den Strohhalm halten müssen, um auch an den Saft in der letzten Ecke zu kommen. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene beschrieben werden.

Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der hintersten Ecke anstößt, kann er durch die Gerade veranschaulicht werden: .


Aufgabe 7: Gerade gesucht


Eine Gerade soll die -Ebene in einem Winkel von schneiden. Über die Gerade ist nur bekannt, dass sie im Punkt beginnt und sie in Richtung des Vektors verläuft. Stelle die Gerade auf.


Lagebeziehung Ebene-Ebene

Mögliche Lagebeziehungen zwischen zwei Ebenen

Merke:

Zwischen zwei Ebenen gibt es drei mögliche Lagebeziehungen:

Lagebeziehung zweier Ebenen (schneidend).png

Lagebeziehung zweier Ebenen (parallel).png

Lagebeziehung zweier Ebenen (identisch).png

Die Ebenen schneiden sich in einer Schnittgeraden.

Die Ebenen sind parallel.

Die Ebenen sind identisch.


Aufgabe 8: Lückentext zur Lagebeziehung zwischen Ebene und Ebene



Untersuchung der Lagebeziehung von zwei Ebenen

Beide Ebenengleichungen in Parameterform

Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen.
Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg


Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform


Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen.


1. Schritt: Setze die beiden Ebenengleichungen gleich.


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.


3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:


4. Schritt: Interpretiere die Lösung des Gleichungssystems:

In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch. Somit hat das LGS keine Lösung und die beiden Ebenen sind parallel.


Aufgabe 9: Ergebnisse interpretieren


Interpretiere die jeweilige Situation geometrisch.


a) 

b) 

c) 

⭐Ebenengleichungen in Parameter- und Koordinatenform

Merke: Lagebeziehung von zwei Ebenen in Koordinatenform und Parameterform untersuchen.
Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg


Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform und Parameterform


Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen.


1. Schritt: Prüfe, ob die Richtungsvektoren und der Ebene orthogonal zum Normalenvektor der Ebene liegen.

Hierfür muss gelten, dass und .


2.Schritt: Interpretiere die Lösung des Skalarproduktes:

Da das Skalarprodukt der Vektoren ist, liegen sie orthogonal zueinander. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.


3. Schritt: Überprüfe die Lagebeziehung mithilfe der Punktprobe.

Setze hierfür den Stützvektor (Aufpunkt) der Ebene in die Ebenengleichung der Ebene ein.


4. Schritt: Interpretiere die Lösung der Punktprobe.

Da der Aufpunkt die Koordinatengleichung von erfüllt, liegt in und die Ebenen sind identisch.


Aufgabe 10: Lagebeziehungen berechnen


Untersuche die Lagebeziehung der jeweiligen Ebenen.


a)


b)

c) 


⭐Beide Ebenengleichungen in Koordinatenform

Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform
Vorgehen zur Untersuchung der Lagebeziehung von Ebenen in Koordinatenform.jpg


Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform


Gegeben sind eine Ebene und eine Ebene . Untersuche die Lagebeziehung der beiden Ebenen.


1. Schritt: Prüfe, ob der Normalenvektor der Ebene ein Vielfaches des Normalenvektors der Ebene ist.


2. Schritt: Interpretiere die Lösung des LGS.

Da das LGS nicht lösbar ist, sind die beiden Gleichungen linear unabhängig und die Ebenen schneiden sich in einer Schnittgeraden.


3. Schritt: Bestimme die Schnittgerade.

Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.

Setze und bestimme und .

Stelle die Geradengleichung auf.


Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform

Gegeben ist eine Ebene . Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.




Aufgabe 12: Schnitt von zwei Zeltflächen


Die beiden Seitenflächen eines Zeltes liegen in den Ebenen und . Der Erdboden wird durch die - -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem cm entspricht?

⭐Berechnung des Winkels zwischen Ebene und Ebene

Merke: Berechnung des Winkel zwischen zwei Ebenen

Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Wie in Abbildung ... zu sehen ist, kannst du dazu die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Betrachten wir die Normalenvektoren, so können wir ähnlich vorgehen, wie beim Berechnen des Winkels zwischen zwei Geraden.

Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum.


Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen


Abbildung: Winkel zwischen zwei Ebenen

Seien und zwei sich schneidende Ebenen mit den Normalenvektoren und . Der Schnittwinkel zwischen und kann mit folgender Formel berechnet werden: .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel darf also nur zwischen und liegen. Ist dein berechneter Winkel , so musst du berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.


Beispiel: Winkel berechnen zwischen zwei Ebenen


Gegeben sind zwei Ebenen und mit und . Berechne den Schnittpunkt zwischen den Ebenen.

1. Schritt: Bestimmte die Normalenvektoren von und .

Der Normalenvektor von ist . Der Normalenvektor von lautet .

2. Schritt: Einsetzen der Normalenvektoren in die Formel.

3. Schritt: Auflösen der Gleichung.

Der Winkel zwischen den Ebenen und beträgt ca. .


Aufgabe 13: Schnittwinkel zwischen Ebenen


Sei eine Ebene mit , eine Ebene mit . und eine Ebene mit .

Berechne den Winkel zwischen

a) E und F

b) F und H und

c) E und H.


Aufgabe 14: Ebenen gesucht


Der Winkel zwischen den beiden Vektoren und beträgt .

Gib die Gleichungen zweier Ebenen und an, die sich in einem Winkel von schneiden.


Aufgabe 15: Bank am Wanderweg


An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene und die Rückenlehne durch die Ebene beschrieben werden kann.

a) Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen und liegen. Überprüfe, ob dies auf die neue Bank zutrifft.

b)
Skizze: Bänke am Wanderweg

Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene und die Rückenlehne der Ebene Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.