|
|
Zeile 88: |
Zeile 88: |
| Wenn ja, dann müsste der zu <math>A</math> gehörende Ortsvektor <math>\vec{OA} = \begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}</math> die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen <math>r,s</math> geben, für die gilt: | | Wenn ja, dann müsste der zu <math>A</math> gehörende Ortsvektor <math>\vec{OA} = \begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}</math> die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen <math>r,s</math> geben, für die gilt: |
|
| |
|
| <div align="center"><math>\vec{OA}=\vec{p}+r \cdot \vec{u}+s \cdot \vec{v}.</math></div> | | <div align="center"><math>\vec{OA}=\vec{p}+r \cdot \vec{u}+s \cdot \vec{v}</math></div> |
| | |
|
| |
|
| <div align="center"><math>\begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}=\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}+s \cdot \begin{pmatrix} {-}2 \\ 0 \\ 3 \end{pmatrix} +t\cdot \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} </math></div> | | <div align="center"><math>\begin{pmatrix} {-}1 \\ 1 \\ {-}1 \end{pmatrix}=\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}+s \cdot \begin{pmatrix} {-}2 \\ 0 \\ 3 \end{pmatrix} +t\cdot \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} </math></div> |
Zeile 102: |
Zeile 103: |
| Aus der ersten Gleichung folgt <math>r=1</math>, die zweite Gleichung ergibt <math>s={-}1</math>. | | Aus der ersten Gleichung folgt <math>r=1</math>, die zweite Gleichung ergibt <math>s={-}1</math>. |
| Die dritte Gleichung ist für diese Werte ebenfalls erfüllt, das heißt der Punkt <math>A</math> liegt in der Ebene <math>E</math>.| 3=Hervorhebung1}} | | Die dritte Gleichung ist für diese Werte ebenfalls erfüllt, das heißt der Punkt <math>A</math> liegt in der Ebene <math>E</math>.| 3=Hervorhebung1}} |
| | |
| | |
|
| |
|
| ==Normalenform und Koordinatenform von Ebenengleichungen== | | ==Normalenform und Koordinatenform von Ebenengleichungen== |
Info
In diesem Lernpfadkapitel werden Ebenen im Raum eingeführt. Neben Punkten, Vektoren und Geraden sind auch Ebenen wichtige Objekte der analytischen Geometrie.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
- Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!
Die Parameterform und die Punktprobe
Merksatz: Die Parameterform
Beispiel: Ebenengleichung aus drei Punkten bestimmen
Gegeben sind die Punkte , , , die nicht auf einer Geraden liegen.
Zum Aufspannen der Ebene wählen wir einen der Punkte als Aufpunkt und berechnen von dort aus die zwei Spannvektoren , zu den anderen Punkten.
Aus unseren Punkten ergibt sich beispielhaft folgende Ebenengleichung .
Die Wahl des Aufpunkts und die daraus resultierende Bestimmung der Spannvektoren ist beliebig. Die Parameterform ist daher nicht eindeutig.
Aufgabe 1: Aufstellen der Parameterform aus der Punkten
Stelle aus den gegebenen Punkten eine Ebenengleichung in Parameterform auf:
a) und
.
b) und
.
Kannst du hierzu auch jeweils zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt?
weitere mögliche Parameterform zu a)
weitere mögliche Parameterform zu b)
Aufgabe 2: Fehlersuche
Furkan und Diego haben versucht zu drei gegebenen Punkten eine Parameterdarstellung einer Ebene aufzustellen. Beurteile inwiefern ihnen das gelungen ist.
Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren und die Ortsvektoren zu den Punkten und angegeben.
Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor zum Punkt
gewählt und als Spannvektoren die Vektoren
und
. Er hätte noch, wie Furkan es gemacht hat, dazuschreiben können, dass es nur eine der möglichen Parameterformen ist.
Aufgabe 3: Lückentext zur Parameterform
Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.
Die Punktprobe
Beispiel: Punktprobe
Liegt der Punkt in der Ebene ?
Wenn ja, dann müsste der zu gehörende Ortsvektor die Ebenengleichung erfüllen, d.h. es müsste ein Paar reeller Zahlen geben, für die gilt:
Die Vektorgleichung ist gleichbedeutend mit dem System der Koordinatengleichungen
Aus der ersten Gleichung folgt , die zweite Gleichung ergibt .
Die dritte Gleichung ist für diese Werte ebenfalls erfüllt, das heißt der Punkt
liegt in der Ebene
.
Normalenform und Koordinatenform von Ebenengleichungen
Merksatz: Normalen- und Koordinatenform
Bisher wurde eine Ebene mithilfe eines Aufpunkts A und zwei Spannvektoren und beschrieben. Eine andere Möglichkeit ist, sie durch einen Aufpunkt A und einen Normalenvektor zu beschreiben. Damit erhält man die Normalengleichung der Ebene. Sie hat die Form .
Zusätzlich lässt sich jede Ebene E ebenfalls beschreiben durch eine Koordinatengleichung der Form . Dabei muss mindestens einer der Koeffizienten a, b, c ungleich null sein.
Ist
eine Koordinatengleichung der Ebene E, so ist
ein Normalenvektor dieser Ebene.
Aufgabe 9: Aufstellen von Normalen- und Koordinatenform
Eine Ebene durch hat den Normalenvektor
a) Gebe eine Normalengleichung der Ebene an.
.
b) Bestimme aus der Normalengleichung eine Koordinatengleichung der Ebene
c) Liegt der Punkt in der Ebene?
Eine Punktprobe mithilfe der Koordinatenform einer Ebenengleichung führt man durch, indem man die Koordinaten für die Parameter
in die Gleichung einsetzt und kontrolliert, ob die Aussage wahr ist.
. Der Punkt A liegt nicht in der Ebene.
Aufgabe 10: Aufstellen der Normalenform
Bestimme für die Ebene in der Abbildung eine Gleichung in der Normalenform.
Aufgabe 11: Modellierung eines Tisches (Normalenform)
Ein Tischfuß zeigt von einem Punkt
des Fußbodens aus nach oben, die Tischplatte ist 8 Einheiten vom Boden entfernt. Bestimme eine Normalengleichung der Ebene, in der die Tischplatte liegt.
ist der Punkt, in dem das Tischbein auf die Tischplatte trifft, liegt somit in der Ebene der Tischplatte und dient als Aufpunkt der Ebenengleichung. Den Normalenvektor berechnen wir nach dem gleichen Verfahren wie bereits in der vorherigen Aufgabe durch die Berechnung von .
Normalengleichung:
Aufgabe 12: Marktplatzaufgabe (Koordinatenform)
Die folgende Abbildung zeigt eine Karte des Marktplatzes in Bremen mit dem Rathaus, dem Dom und weiteren sehenswürdigen Gebäuden. Legt man ein Koordinatensystem mit dem Koordinatenursprung in der Mitte des Marktplatzes, sodass die -Achse nach Süden, die -Achse nach Osten und die -Achse senkrecht zum Himmel zeigt.
Vor dem Rathaus nimmt Höhe des Marktplatzes nach Südwesten leicht ab. Dieser schräge Teil des Marktplatzes soll durch eine Ebene beschrieben werden.
a) Berechne einen möglichen Normalenvektor der Ebene E.
Ein Normalenvektor muss zu den Spannvektoren orthogonal (senkrecht) sein. Also ist und . Hieraus folgt das Gleichungssystem
.
Wählt man z.B.
folgt durch Einsetzen in das Gleichungssystem und Umformen:
und
. Normalenvektor:
b) Bestimme eine Koordinatengleichung der Ebene E
.
Vor dem Rathaus steht das Denkmals „Roland von Bremen“ mit standhaftem Blick auf dem Dom. Sein Fußpunkt ist . Er wurde genau vertikal, d.h. senkrecht auf der -Ebene errichtet.
c) Berechne die Zahl z derart, dass R in der Ebene liegt.
.
Aufgabe 13: Schattenwurf (Gerade und Ebene in Koordinatenform)
Aufgabe 14: Reflexion zur Koordinatenform
Überführung der Parameterform in die Koordinatenform
Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung
Wir suchen die Koordinatengleichung der Ebene
. Ein Normalenvektor
muss zu den Spannvektoren
und
orthogonal (senkrecht) sein, also ist
und
. Hieraus folgt
und daraus XYZXYZ. Wählt man z.B.
, so erhält man
und
und damit
. Ansatz für die Koordinatengleichung:
. Man berechnet
indem man für
und
die Koordinaten des Stützvektors von E einsetzt:
. Koordinatengleichung:
Aufgabe 15: Koordinatengleichung aus Parametergleichung
Bestimme eine Koordinatengleichung der Ebene
.
Aufgabe 16: Parameter-, Normalen- und Koordinatengleichung
Die Ebene E ist durch die drei Punkte
,
,
festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene E.