Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 71: Zeile 71:
Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.  
Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.  


{{LearningApp|app=19928923}} | Arbeitsmethode | Farbe={{Farbe|orange}} }}
{{LearningApp|app=19928923|width=100%|height=400px}}
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


==Normalenform und Koordinatenform von Ebenengleichungen==
==Normalenform und Koordinatenform von Ebenengleichungen==

Version vom 9. Mai 2021, 09:37 Uhr

Info

In diesem Lernpfadkapitel werden Ebenen im Raum eingeführt. Neben Punkten, Vektoren und Geraden sind auch Ebenen wichtige Objekte der analytischen Geometrie.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!


Die Parameterform und die Punktprobe

Erinnerung: Die Parameterform

Eine Ebene ist bestimmt durch einen Punkt A und zwei Vektoren und , die nicht parallel zueinander sind.

Diese Ebene kann wie folgt beschrieben werden:

Diese Vektorgleichung bezeichnet man als Parameterdarstellung/Parametergleichung der Ebene mit den Parameter und .

Um eine Parameterdarstellung aufzustellen reichen, statt eines Punktes und zwei Vektoren, auch:

  • drei Punkte, die nicht alle auf einer Geraden liegen
  • Gerade und Punkt
  • zwei sich schneidende Geraden
  • zwei parallele Geraden


Beispiel: Ebenengleichung aus drei Punkten bestimmen

Gegeben sind die Punkte , , , die nicht auf einer Geraden liegen.

Zum Aufspannen der Ebene wählen wir einen der Punkte als Aufpunkt und berechnen von dort aus die zwei Spannvektoren , zu den anderen Punkten.

Aus unseren Punkten ergibt sich beispielhaft folgende Ebenengleichung .

Die Wahl des Aufpunkts und die daraus resultierende Bestimmung der Spannvektoren ist beliebig. Die Parameterform ist daher nicht eindeutig.


Aufgabe 1: Aufstellen der Parameterform aus der Punkten

Stelle aus den gegebenen Punkten eine Ebenengleichung in Parameterform auf:

a)     und

.

b)     und

.

Kannst du hierzu auch jeweils zweite Ebenengleichung aufstellen, die die gleiche Ebene beschreibt?

weitere mögliche Parameterform zu a)

weitere mögliche Parameterform zu b)


Aufgabe 2: Fehlersuche

Furkan und Diego haben versucht zu drei gegebenen Punkten eine Parameterdarstellung einer Ebene aufzustellen. Beurteile inwiefern ihnen das gelungen ist.

Furkans Rechnung
Diegos Rechnung









Mögliche Begründungen: Furkans Rechnung ist nicht richtig. Er hat statt der Spannvektoren und die Ortsvektoren zu den Punkten und angegeben.

Diegos Rechnung ist richtig. Er hat als Stützvektor den Ortsvektor zum Punkt gewählt und als Spannvektoren die Vektoren und . Er hätte noch, wie Furkan es gemacht hat, dazuschreiben können, dass es nur eine der möglichen Parameterformen ist.


Aufgabe 3: Lückentext zur Parameterform

Bearbeite das folgende Applet. Du kannst damit dein Wissen zur Parameterform einer Ebene überprüfen.


Normalenform und Koordinatenform von Ebenengleichungen

Merksatz: Normalen- und Koordinatenform

Bisher wurde eine Ebene mithilfe eines Aufpunkts A und zwei Spannvektoren und beschrieben. Eine andere Möglichkeit ist, sie durch einen Aufpunkt A und einen Normalenvektor zu beschreiben. Damit erhält man die Normalengleichung der Ebene. Sie hat die Form .

Zusätzlich lässt sich jede Ebene E ebenfalls beschreiben durch eine Koordinatengleichung der Form . Dabei muss mindestens einer der Koeffizienten a, b, c ungleich null sein.

Ist eine Koordinatengleichung der Ebene E, so ist ein Normalenvektor dieser Ebene.


Aufgabe 9: Aufstellen von Normalen- und Koordinatenform

Eine Ebene durch hat den Normalenvektor

a) Gebe eine Normalengleichung der Ebene an.

.

b) Bestimme aus der Normalengleichung eine Koordinatengleichung der Ebene

Mit dem Normalenvektor ergibt sich für die Koordinatengleichung der Ansatz: mit . Den Wert für berechnet man indem man die Koordinaten des Punktes einsetzt für einsetzt.

Lösung:

c) Liegt der Punkt in der Ebene?

Eine Punktprobe mithilfe der Koordinatenform einer Ebenengleichung führt man durch, indem man die Koordinaten für die Parameter in die Gleichung einsetzt und kontrolliert, ob die Aussage wahr ist.
. Der Punkt A liegt nicht in der Ebene.


Aufgabe 10: Aufstellen der Normalenform
Bestimme für die Ebene in der Abbildung eine Gleichung.

Exemplarische Lösung: ist der Aufpunkt. Den Normalenvektor berechnen wir mithilfe des Punktes . Damit ist , d.h. .

Normalengleichung:


Aufgabe 11: Modellierung eines Tisches (Normalenform)
Ein Tischfuß zeigt von einem Punkt des Fußbodens aus nach oben, die Tischplatte ist 8 Einheiten vom Boden entfernt. Bestimme eine Normalengleichung der Ebene, in der die Tischplatte liegt.

ist der Punkt, in dem das Tischbein auf die Tischplatte trifft, liegt somit in der Ebene der Tischplatte und dient als Aufpunkt der Ebenengleichung. Den Normalenvektor berechnen wir nach dem gleichen Verfahren wie bereits in der vorherigen Aufgabe durch die Berechnung von .

Normalengleichung:


Aufgabe 12: Marktplatzaufgabe (Koordinatenform)

Die folgende Abbildung zeigt eine Karte des Marktplatzes in Bremen mit dem Rathaus, dem Dom und weiteren sehenswürdigen Gebäuden. Legt man ein Koordinatensystem mit dem Koordinatenursprung in der Mitte des Marktplatzes, sodass die -Achse nach Süden, die -Achse nach Osten und die -Achse senkrecht zum Himmel zeigt. Vor dem Rathaus nimmt Höhe des Marktplatzes nach Südwesten leicht ab. Dieser schräge Teil des Marktplatzes soll durch eine Ebene beschrieben werden.

a) Berechne einen möglichen Normalenvektor der Ebene E.

b) Bestimme eine Koordinatengleichung der Ebene E

Vor dem Rathaus steht das Denkmals „Roland von Bremen“ mit standhaftem Blick auf dem Dom. Sein Fußpunkt ist . Er wurde genau vertikal, d.h. senkrecht auf der -Ebene errichtet.

c) Berechne die Zahl z derart, dass R in der Ebene liegt.


Aufgabe 13: Schattenwurf (Gerade und Ebene in Koordinatenform)

Ein Baum mit dem Fußpunkt und der Spitze wird von der Sonne bestrahlt, deren Sonnenstrahlen parallel zum Vektor verlaufen. Der Baum wirft einen Schatten auf einen Hang, der durch die Ebene beschrieben wird.

Wo liegt der Schattenpunkt T der Baumspitze S auf dem Hang und wie lang ist der Schatten des Baumes?


Aufgabe 14: Reflexion zur Koordinatenform

a) Warum muss bei einer Koordinatengleichung einer Ebene E mindestens einer der Koeffizienten ungleich null sein?

b) Begründe: Unterscheiden sich die Koordinatengleichungen der Form von zwei Ebenen nur in der Konstanten d, dann sind die Ebenen zueinander parallel.

c) Beurteile: Alle Ebenen, bei denen in der Koordinatengleichung die Koeffizienten und ungleich Null, aber ist, haben eine Gemeinsamkeit.


Überführung der Parameterform in die Koordinatenform


Beispiel: Von der Parameter- zur Koordinatenform einer Ebenengleichung
Wir suchen die Koordinatengleichung der Ebene . Ein Normalenvektor muss zu den Spannvektoren und orthogonal (senkrecht) sein, also ist und . Hieraus folgt und daraus XYZXYZ. Wählt man z.B. , so erhält man und und damit . Ansatz für die Koordinatengleichung: . Man berechnet indem man für und die Koordinaten des Stützvektors von E einsetzt: . Koordinatengleichung:


Aufgabe 15: Koordinatengleichung aus Parametergleichung
Bestimme eine Koordinatengleichung der Ebene .


Aufgabe 16: Parameter-, Normalen- und Koordinatengleichung
Die Ebene E ist durch die drei Punkte , , festgelegt. Bestimme eine Parametergleichung, eine Normalengleichung und eine Koordinatengleichung der Ebene E.