Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 51: | Zeile 51: | ||
|Merksatz}} | |Merksatz}} | ||
{{Box | | {{Box | Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene | | ||
Gegeben sind eine Ebene <math>E: \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math> und eine Gerade <math>g: \vec{x}=\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) </math>. Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt. | Gegeben sind eine Ebene <math>E: \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) </math> und eine Gerade <math>g: \vec{x}=\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) </math>. Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt. | ||
Zeile 98: | Zeile 98: | ||
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | {{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} | {{Lösung versteckt|1= Der Schatten liegt auf der <math> x_1-x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P = \left( \begin{matrix} x_1\\ x_2\\ 0 \end{matrix} \right) </math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}} | ||
{{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f: \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | {{Lösung versteckt|1= '''1. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f: \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | ||
<math>g: \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | <math>g: \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>, | ||
Zeile 137: | Zeile 137: | ||
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''unendlich viele gemeinsame Punkte''' besitzen, so '''liegt''' die Gerade '''in''' der Ebene. | Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''unendlich viele gemeinsame Punkte''' besitzen, so '''liegt''' die Gerade '''in''' der Ebene. | ||
| | | | ||
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''nicht orthogonal''' zueinander sind, dann schneiden sich die Gerade und die Ebene und es kann ein '''Schnittpunkt''' bestimmt werden. | Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''nicht orthogonal''' zueinander sind, dann '''schneiden''' sich die Gerade und die Ebene und es kann ein '''Schnittpunkt''' bestimmt werden. | ||
}} | }} | ||
|Merksatz}} | |Merksatz}} | ||
{{Box|⭐Vorgehen: | {{Box|⭐Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene mit dem Normalenvektor | | ||
[[Datei:Vorgehen Lagebeziehung Gerade und Ebene1.jpg|zentriert|rahmenlos|600x600px]] | [[Datei:Vorgehen Lagebeziehung Gerade und Ebene1.jpg|zentriert|rahmenlos|600x600px]] | ||
Zeile 148: | Zeile 148: | ||
{{Box | Beispiel: Lagebeziehung einer Gerade und einer Ebene in Koordinatenform | | {{Box |⭐ Beispiel: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform | | ||
Gegeben sind eine Ebene <math> E: 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math> g: \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene. | Gegeben sind eine Ebene <math> E: 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math> g: \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene. | ||
Zeile 158: | Zeile 158: | ||
'''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt: <math> 2 \cdot 3 -2 =5 \Rightarrow 4 | '''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Stützvektor der Gerade in der Ebene liegt: <math> 2 \cdot 3 -2 =5 \Rightarrow 4 \neq 5 </math> | ||
<math> \Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math> g </math> und die Ebene <math>E</math> parallel zueinander. | <math> \Rightarrow</math> Der Stützvektor liegt nicht in der Ebene. Daher verlaufen die Gerade <math> g </math> und die Ebene <math>E</math> parallel zueinander. | ||
Zeile 165: | Zeile 165: | ||
| Hervorhebung1}} | | Hervorhebung1}} | ||
{{Box| Aufgabe: Bestimme den Parameter | | {{Box|⭐ Aufgabe 4: Bestimme den Parameter | | ||
Gegeben ist eine Ebene <math> E: \vec{x} = -2x_1 + 3x_2 - x_3 = 3 </math>. | Gegeben ist eine Ebene <math> E: \vec{x} = -2x_1 + 3x_2 - x_3 = 3 </math>. | ||
Bestimme <math> l </math> und <math> m </math> in den folgenden Geraden so, dass die entsprechende Lagebeziehung erfüllt ist. | Bestimme <math> l </math> und <math> m </math> in den folgenden Geraden so, dass die entsprechende Lagebeziehung erfüllt ist. | ||
Zeile 175: | Zeile 175: | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 8-m = 0 \Rightarrow m = 8 </math>.|2=Lösung anzeigen|3=Lösung verbergen}} | ||
b) Die Gerade <math> h: \vec{x} = \left( \begin{matrix} \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) </math> soll in der Ebene <math> E </math> liegen. | b) Die Gerade <math> h: \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) </math> soll in der Ebene <math> E </math> liegen. | ||
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, | {{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Stützvektor von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | {{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Stützvektor von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5} </math>. | {{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5} </math>. | ||
Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5} </math>. | Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt <math> 0 </math> sein: <math> 3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5} </math>. | ||
'''Finde danach <math>l</math> durch eine Punktprobe:''' Setze <math> \vec | '''Finde danach <math>l</math> durch eine Punktprobe:''' Setze <math> \vec{a} = \left( \begin{matrix} l\\ \frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) </math> in die Ebenengleichung ein und löse nach l auf: <math> -2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}</math>. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
c) Die Gerade <math> i: \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} | c) Die Gerade <math> i: \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right) </math> soll die Ebene <math> E </math> schneiden. | ||
{{Lösung versteckt|1=Es gibt keine eindeutige Lösung! Der Richtungsvektor <math> \vec{u} </math> von <math>g</math> darf nur nicht orthogonal zum Normalenvektor von <math>E</math> liegen. |2=Tipp anzeigen|3=Tipp verbergen}} | {{Lösung versteckt|1=Es gibt keine eindeutige Lösung! Der Richtungsvektor <math> \vec{u} </math> von <math>g</math> darf nur nicht orthogonal zum Normalenvektor von <math>E</math> liegen. |2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= Für <math> m = | {{Lösung versteckt|1= Für <math> m = 8 </math> ist der Richtungsvektor von <math>g</math> orthogonal zum Normalenvektor von <math>E</math> und die Gerade <math>g</math> liegt parallel zur Ebene <math>E</math>. Jeder andere Wert für <math>m</math> ist eine richtige Lösung. |2=Lösung anzeigen|3=Lösung verbergen}} | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box | Aufgabe | {{Box|⭐ Aufgabe 5: Beamer | | ||
Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math> E: x_2 + 3x_3 = 2 </math> dargestellt. Der Strahl des | Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math> E: x_2 + 3x_3 = 2 </math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math> j: \vec{x} = \left( \begin{matrix} {-}5\\ 1 \frac{3}{2} \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) </math> modelliert. | ||
Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft. | Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft. | ||
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem | {{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= <math> -5 + 2s + 3(\frac{3}{2} + \frac{1}{2}s) = 2 \Leftrightarrow s \approx 0{,}71 </math> | {{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein: <math> -5 + 2s + 3(\frac{3}{2} + \frac{1}{2}s) = 2 \Leftrightarrow s \approx 0{,}71 </math> | ||
Berechne den Schnittpunkt, indem du s in die Geradengleichung einsetzt: <math>\left( \begin{matrix} 7\\ {-}5\\ \frac{3}{2} \end{matrix} \right) + 0{,}71 \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) = \left( \begin{matrix} 7{,}71\\ {-}3{,}58\\ 1{,}86 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}} | Berechne den Schnittpunkt, indem du <math>s</math> in die Geradengleichung einsetzt: <math>\left( \begin{matrix} 7\\ {-}5\\ \frac{3}{2} \end{matrix} \right) + 0{,}71 \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) = \left( \begin{matrix} 7{,}71\\ {-}3{,}58\\ 1{,}86 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|orange}}}} | | Arbeitsmethode | Farbe={{Farbe|orange}}}} | ||
Version vom 9. Mai 2021, 09:18 Uhr
Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".
Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt. Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.
Lagebeziehung Gerade-Ebene
Mögliche Lagebeziehungen zwischen Gerade und Ebene
Untersuchung der Lagebeziehung zwischen Gerade und Ebene
⭐Berechnung des Winkels zwischen Gerade und Ebene
Lagebeziehung Ebene-Ebene
Mögliche Lagebeziehungen zwischen zwei Ebenen
Untersuchung der Lagebeziehung von zwei Ebenen
Zwei Ebenengleichungen in Parameterform
Eine Ebenengleichungen in Parameterform – eine Ebenengleichung in Koordinatenform
Zwei Ebenengleichungen in Koordinatenform
⭐Berechnung des Winkels zwischen Ebene und Ebene