Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 215: | Zeile 215: | ||
{{Box | Aufgabe | {{Box | Aufgabe 4: | | ||
Über dem Schuldach schwebt eine Drohne an der Stelle <math>A(3|4|-1)</math> und ein Falke schwebt auf der Stelle <math>B(1|7|4)</math>. Finde heraus, wer den geringeren Abstand zum Schuldach hat. Das Schuldach lässt sich durch folgende Gleichung beschreiben: <math>E: 8x_1-4x_2-x_3=5</math>. | Über dem Schuldach schwebt eine Drohne an der Stelle <math>A(3|4|-1)</math> und ein Falke schwebt auf der Stelle <math>B(1|7|4)</math>. Finde heraus, wer den geringeren Abstand zum Schuldach hat. Das Schuldach lässt sich durch folgende Gleichung beschreiben: <math>E: 8x_1-4x_2-x_3=5</math>. | ||
Zeile 317: | Zeile 317: | ||
{{Box | 1=Die richtige Reihenfolge | 2= | {{Box | 1=Die richtige Reihenfolge | 2= | ||
Im Folgenden wurde der Abstand von <math>A(3|9|-2)</math> und <math>g:\vec{x}=\begin{pmatrix} 9 \\ -3 \\ 2 \end{pmatrix}+s | Im Folgenden wurde der Abstand von <math>A(3|9|-2)</math> und <math>g:\vec{x}=\begin{pmatrix} 9 \\ -3 \\ 2 \end{pmatrix}+s\cdot\begin{pmatrix} 4 \\ -5 \\ -7 \end{pmatrix}</math> bestimmt. | ||
Bringe die einzelnen Schritte in die richtige Reihenfolge. | Bringe die einzelnen Schritte in die richtige Reihenfolge. | ||
Zeile 326: | Zeile 326: | ||
{{Box | 1=Aufgabe 6: Lichterkette | 2= | {{Box | 1=Aufgabe 6: Lichterkette | 2= | ||
[[Datei:Crystal-ball-fairy-lights1.jpg|rechts | rahmenlos]] | [[Datei:Crystal-ball-fairy-lights1.jpg|rechts | rahmenlos]] | ||
Für ein Stadtfest soll von der Spitze <math>P(-2|3|10) </math> eines Restaurants eine Lichterkette auf kürzestem Weg zur nahen Uferlinie des Kanals <math>g:\vec{x}=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+r | Für ein Stadtfest soll von der Spitze <math>P(-2|3|10) </math> eines Restaurants eine Lichterkette auf kürzestem Weg zur nahen Uferlinie des Kanals <math>g:\vec{x}=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+r\cdot\begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix} </math> eine Lichterkette gespannt werden. | ||
Berechne die Mindestlänge der Lichterkette auf Meter gerundet. | Berechne die Mindestlänge der Lichterkette auf Meter gerundet. | ||
Zeile 337: | Zeile 337: | ||
# Stelle die Hilfsebene <math>H</math> in Koordinatenform auf: | # Stelle die Hilfsebene <math>H</math> in Koordinatenform auf: | ||
<math>-4x_1+3x_2+2x_3=37, da \begin{pmatrix} -2 \\ 3 \\ 10 \end{pmatrix} | <math>-4x_1+3x_2+2x_3=37, da \begin{pmatrix} -2 \\ 3 \\ 10 \end{pmatrix}\cdot\begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}=37 </math> | ||
# Schnittpunkt von <math>g</math> und <math>H</math> bestimmen: | # Schnittpunkt von <math>g</math> und <math>H</math> bestimmen: | ||
<math>-4 | <math>-4\cdot(1-4r)+3\cdot(2+3r)+2\cdot(3+2r)=37 | ||
\Leftrightarrow -4+16r+6+9r+6+4r=37 | \Leftrightarrow -4+16r+6+9r+6+4r=37 | ||
\Leftrightarrow 8+29r=37 | \Leftrightarrow 8+29r=37 | ||
Zeile 348: | Zeile 348: | ||
# <math>r</math> in <math>g</math> einsetzten, um <math>L</math> zu bestimmen: | # <math>r</math> in <math>g</math> einsetzten, um <math>L</math> zu bestimmen: | ||
<math> g:\vec{x}= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+1 | <math> g:\vec{x}= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+1\cdot\begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}=\begin{pmatrix} -3 \\ 5 \\ 5 \end{pmatrix </math> | ||
<math> \Rightarrow L(-3|5|5) </math> | <math> \Rightarrow L(-3|5|5) </math> | ||
Version vom 4. Mai 2021, 10:43 Uhr
Motivation?
- ganz am Anfang, zur Motivation: 3 Situationen, zuordnen lassen, welche Punkt-Ebene, Punkt-Gerade usw. ist (mit Learning App), mit Bild
Abstand eines Punktes von einer Ebene
Das Lotfußpunktverfahren
Die Hesse´sche Normalenform
Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotverfahren auch die Möglichkeit, dies mit der Hesse´schen Normalenform zu berechnen. In diesem Kapitel lernst du, wie du die Normalenform aufstellst und sie zur Abstandsberechnung anwendest.
Falls du noch nicht genug hast, kannst du auch versuchen, die Aufgaben vom Lotfußpunktverfahren mit der Hesse´schen Normalenform zu lösen.
Abstand eines Punktes von einer Geraden
- Aufgaben 2-3 (Idee: auch mal was begründen/ vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Abstand zweier windschiefer Geraden
- Janne: Verfahen in richtige Reihenfolge bringen
- Janne: Merksatz
- Aufgaben 2 (Idee: auch mal was begründen/vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Gemischte Aufgaben
- auf Anfangsaufgabe zurückkommen
- 3 Aufgaben
Wenn es geht, GeoGebra einbauen!!!