Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Die Steigung eines Funktionsgraphen in einem Punkt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
K (1 Version importiert)
(kein Unterschied)

Version vom 28. Dezember 2018, 11:13 Uhr


Dieser Lernpfad beschäftigt sich mit der Steigung eines Funktionsgraphen in einem Punkt.

In den Aufgaben 1 und 2 wird die grundlegende Vorstellung von Sekanten und Tangenten behandelt.

In den Aufgaben 3, 4 und 5 geht es darum Tangentengleichungen und Normalengleichungen aufzustellen.

Aufgabe 6 behandelt den Zusammenhang der Steigung und der Ableitung in einem Punkt.

Bei den Aufgaben 7 und 8 handelt es sich um Forderaufgaben im Bereich lokale Linearität und Ableitung in besonderen Punkten.



Unterscheidung Tangente und Sekante

Aufgabe 1: Lückentext zur Begriffsklärung
{{{2}}}



Aufgabe 2: Weiterführender Lückentext
{{{2}}}

Tangentengleichungen aufstellen

Aufgabe 3
{{{2}}}


Aufgabe 4
{{{2}}}



Aufgabe 5: Tangente durch Normale
{{{2}}}



Aufgabe 6: Richtig oder Falsch?

Schaue dir das Applet an und entscheide auf Grundlage dessen, ob die unten stehenden Aussagen richtig oder falsch sind.

Hinweis: Du kannst den Punkt P und auch die damit verbundene Tangente t selbst bewegen, um dir die Aussagen zu veranschaulichen. Oder du nutzt alternativ den eingebauten Regler. Error: www.geogebra.org is not an authorized iframe site.


Forderaufgaben

Aufgabe 7: Lokale Linearität
{{{2}}}


Aufgabe 8: Besondere Punkte
{{{2}}}