Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Die Steigung eines Funktionsgraphen in einem Punkt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Main>Theresa WWU3
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 145: Zeile 145:
<popup name="Lösung zu a)"> Steigung der Tangenten m=0,91, also gilt für die Ableitung der Funktion f in P: f'(0,54)=0,91. </popup>
<popup name="Lösung zu a)"> Steigung der Tangenten m=0,91, also gilt für die Ableitung der Funktion f in P: f'(0,54)=0,91. </popup>
<popup name="Lösung zu b)"> Nein, es kann keine zwei verschiedenen Tangenten in einem Punkt geben. Für die Ableitung an dieser "Knickstelle" bedeutet dies, dass sie gar nicht existiert, eben da man keine eindeutige Tangente einzeichnen kann. Obwohl man die Ableitung an allen anderen Punkten der Funktion schon bilden kann, spricht man davon, dass die gesamte Funktion keine Ableitungsfunktion besitzt. Sie ist also "nicht differenzierbar". Es gibt außer dieser noch weitere Funktionen, für die dies gilt. </popup>}}
<popup name="Lösung zu b)"> Nein, es kann keine zwei verschiedenen Tangenten in einem Punkt geben. Für die Ableitung an dieser "Knickstelle" bedeutet dies, dass sie gar nicht existiert, eben da man keine eindeutige Tangente einzeichnen kann. Obwohl man die Ableitung an allen anderen Punkten der Funktion schon bilden kann, spricht man davon, dass die gesamte Funktion keine Ableitungsfunktion besitzt. Sie ist also "nicht differenzierbar". Es gibt außer dieser noch weitere Funktionen, für die dies gilt. </popup>}}
[[Kategorie:Digitale Werkzeuge in der Schule|!]]

Version vom 27. Dezember 2018, 23:00 Uhr


Dieser Lernpfad beschäftigt sich mit der Steigung eines Funktionsgraphen in einem Punkt.

In den Aufgaben 1 und 2 wird die grundlegende Vorstellung von Sekanten und Tangenten behandelt.

In den Aufgaben 3, 4 und 5 geht es darum Tangentengleichungen und Normalengleichungen aufzustellen.

Aufgabe 6 behandelt den Zusammenhang der Steigung und der Ableitung in einem Punkt.

Bei den Aufgaben 7 und 8 handelt es sich um Forderaufgaben im Bereich lokale Linearität und Ableitung in besonderen Punkten.



Unterscheidung Tangente und Sekante

Aufgabe 1: Lückentext zur Begriffsklärung
{{{2}}}



Aufgabe 2: Weiterführender Lückentext
{{{2}}}

Tangentengleichungen aufstellen

Aufgabe 3
{{{2}}}


Aufgabe 4
{{{2}}}



Aufgabe 5: Tangente durch Normale
{{{2}}}



Aufgabe 6: Richtig oder Falsch?

Schaue dir das Applet an und entscheide auf Grundlage dessen, ob die unten stehenden Aussagen richtig oder falsch sind.

Hinweis: Du kannst den Punkt P und auch die damit verbundene Tangente t selbst bewegen, um dir die Aussagen zu veranschaulichen. Oder du nutzt alternativ den eingebauten Regler. Error: www.geogebra.org is not an authorized iframe site.


Forderaufgaben

Aufgabe 7: Lokale Linearität
{{{2}}}


Aufgabe 8: Besondere Punkte
{{{2}}}