Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 139: | Zeile 139: | ||
| | | | ||
Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen (<math>a</math>) her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein: | Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen (<math>a</math>) her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein: | ||
* Die Länge (<math>b</math>) soll nicht größer als <math> | * Die Länge (<math>b</math>) soll nicht größer als <math> 200</math>cm sein. | ||
* Länge (<math>b</math>) plus Umfang einer quadratischen Seitenfläche soll <math> | * Länge (<math>b</math>) plus Umfang einer quadratischen Seitenfläche soll <math> 360</math>cm groß sein. [[Datei:Kartonfabrik 3.png|300|rechts|rahmenlos]] | ||
'''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | '''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | ||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
Zeile 152: | Zeile 150: | ||
Nutze die zweite Bedingung, stelle eine Gleichung auf und stelle diese nach <math>b</math> um. | Nutze die zweite Bedingung, stelle eine Gleichung auf und stelle diese nach <math>b</math> um. | ||
Zweite Bedingung: Länge (<math>b</math>) plus Umfang '''einer''' quadratischen Seitenfläche soll <math> | Zweite Bedingung: Länge (<math>b</math>) plus Umfang '''einer''' quadratischen Seitenfläche soll <math> 360</math>cm groß sein. Den Umfang einer quadratischen Seitenfläche erhältst du, indem du <math>4*a</math> rechnest. | ||
| 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | ||
Zeile 161: | Zeile 159: | ||
<math>200</math><math>\geq</math><math>360-4*a</math>. | <math>200</math><math>\geq</math><math>360-4*a</math>. | ||
| 2= Tipp zur Bestimmung der Definitionsmenge | 3= Tipp verbergen }} | | 2= Tipp zur Bestimmung der Definitionsmenge | 3= Tipp verbergen }} | ||
'''b)''' Gebe das maximale Volumen an. | |||
{{Lösung versteckt | 1= | |||
Um das maximale Volumen angeben zu können, nutze die in Aufgabenteil a ermittelten Abmessungen für die Höhe, Breite und Länge. Das Volumen errechnest du, indem durch Höhe <math>* </math>Breite <math>*</math> Länge rechnest. |Tipp zur Errechnung des Volumens | Tipp verbergen }} | |||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
Zeile 176: | Zeile 181: | ||
<math>360 - 4*a \geq 0</math>. | <math>360 - 4*a \geq 0</math>. | ||
Durch das Umstellen nach <math>a</math> folgt:<math>a \leq 90</math>. | Durch das Umstellen nach <math>a</math> folgt:<math>a \leq 90</math>. | ||
Außerdem muss die Länger kleiner gleich <math>200 | Außerdem muss die Länger kleiner gleich <math>200</math>cm sein. Es gilt also: | ||
<<math>360 - 4*a \leq 200</math>. | <<math>360 - 4*a \leq 200</math>. | ||
Durch das Umstellen nach <math>a</math> folgt: <math>a \geq 40</math>. | Durch das Umstellen nach <math>a</math> folgt: <math>a \geq 40</math>. | ||
Zeile 197: | Zeile 202: | ||
Durch das Einsetzen von <math> a = 60 </math> in <math>V''(a)</math> folgt, dass <math>V(a)</math> an dieser Stelle einen Hochpunkt besitzt. | Durch das Einsetzen von <math> a = 60 </math> in <math>V''(a)</math> folgt, dass <math>V(a)</math> an dieser Stelle einen Hochpunkt besitzt. | ||
Breite und Höhe sind also <math>60 | Breite und Höhe sind also <math>60</math>cm. | ||
Die Länge ergibt sich durch das einsetzen von <math> a = 60</math> in <math> b = 360 - 4*a</math>. | Die Länge ergibt sich durch das einsetzen von <math> a = 60</math> in <math> b = 360 - 4*a</math>. | ||
<math> b = 120 | <math> b = 120</math>cm. | ||
'''Das Volumen bestimmen''': Wir berechnen nun das Volumen des optimalen Paketes, indem wir <math>60 * 60 * 120 </math> berechnen. | '''Das Volumen bestimmen''': Wir berechnen nun das Volumen des optimalen Paketes, indem wir <math>60 * 60 * 120 </math> berechnen. | ||
Das maximale Volumen beträgt also <math>432 000 | Das maximale Volumen beträgt also <math>432 000</math>cm³. | ||
|2 = Lösung der Aufgabe | 3= Lösung verbergen}} | |2 = Lösung der Aufgabe | 3= Lösung verbergen}} |
Version vom 27. Mai 2020, 12:56 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes. Überlege also zunächst, wie der Flächeninhalt berechnet wird.
Über die Größen selbst weißt du ebenfalls etwas durch den Umfang: . Stelle die Formel für den Umfang nun nach um.
Setze nun deine Formel für in den Flächeninhalt ein. So erhälst du deine Zielfunktion.
Deine Zielfunktion ist:
Für die Zielfunktion kann nur zwischen und liegen, also
Nun musst du den optimalen Wert berechnen. Gesucht ist hier das Maximum. Bilde dazu die Ableitungen:
Prüfe nun die notwendige und hinreichende Bedingung.
Mit der notwendigen Bedingung erhälst du dann .
Mit der hinreichenden Bedingung folgt , somit erfüllt alle Bedingungen.Berechne nun .
Der Flächeninhalt des Fussballfeldes wird also für eine Breite von und eine Höhe von maximal.
Berechne nun durch Einsetzen von und den Flächeninhalt :
Der Flächeninhalt wird also auf maximiert.
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen