Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 277: | Zeile 277: | ||
Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Als Nebenbedingung eignet sich die Funktion <math>g(x)=(x-3)²+2,5</math>. | |||
Das liegt daran, dass ein Eckpunkt im Koordinatenursprung liegt. Somit wird die Länge des Rechteckes durch den Funktionswert an der Stelle x bestimmt. | |||
Die Nebenbedingung <math>g(x) wird als in <math>A(x,y)=x*y</math> für <math>y</math> eingesetzt. | Tipp für eine geeignete Nebenbedingung | Tipp verbergen }} | |||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1= | 1= | ||
Mit <math>x,y</math> in <math>cm</math> berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x*y</math>. | Mit <math>x,y</math> in <math>cm</math> berechnen wir den Flächeninhalt mit der Funktion <math>A(x,y)=x*y</math>. | ||
Version vom 27. Mai 2020, 12:31 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen