Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 263: | Zeile 263: | ||
| Aufgabe 5: Randextrema beachten | | | Aufgabe 5: Randextrema beachten | | ||
Gegeben ist der Graph einer Funktion <math> | Gegeben ist der Graph einer Funktion <math>g</math> mit | ||
<math>g(x)=(x-3)^2+2{,}5</math> im Intervall <math>[0{,}3]</math>. | <math>g(x)=(x-3)^2+2{,}5</math> im Intervall <math>[0{,}3]</math>. | ||
Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt A auf dem Graphen von g liegt. | Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt A auf dem Graphen von g liegt. | ||
Welches der möglichen Rechtecke hat den größten Flächeninhalt? | Welches der möglichen Rechtecke hat den größten Flächeninhalt? | ||
Hinweis: Mit Hilfe der x-Achse wollen wir die Breite des Rechteckes in cm und mit Hilfe der y-Achse die Länge des Rechteckes in cm angeben. | |||
Hinweis: In der Abbildung kannst du Punkt C verschieben. | Hinweis: In der Abbildung kannst du Punkt C verschieben. | ||
Zeile 274: | Zeile 276: | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | Den Flächeninhalt von einem Rechteck bestimmst du, indem du die Breite mit der Länge multiplizierst. Den Flächeninhalt geben wir durch <math>A(x,y)</math> an. Es gilt also <math> A(x,y) = x*y </math> | Tipp zur Berechnung des Flächeninhaltes | Tipp verbergen }} | ||
{{Lösung versteckt| | |||
{{Lösung versteckt| | {{Lösung versteckt| | ||
1= | 1= |
Version vom 27. Mai 2020, 12:25 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Gegeben ist die Länge der Laufbahn um den Sportplatz herum, also der Umfang des Sportplatzes. Maximiert werden soll die Größe des Fussballfeldes, also der rechteckige Flächeninhalt innerhalb des Sportplatzes. Überlege also zunächst, wie der Flächeninhalt berechnet wird.
Über die Größen selbst weißt du ebenfalls etwas durch den Umfang: . Stelle die Formel für den Umfang nun nach um.
Setze nun deine Formel für in den Flächeninhalt ein. So erhälst du deine Zielfunktion.
Deine Zielfunktion ist:
Für die Zielfunktion kann nur zwischen und liegen, also
Nun musst du den optimalen Wert berechnen. Gesucht ist hier das Maximum. Bilde dazu die Ableitungen:
Prüfe nun die notwendige und hinreichende Bedingung.
Mit der notwendigen Bedingung erhälst du dann .
Mit der hinreichenden Bedingung folgt , somit erfüllt alle Bedingungen.Berechne nun .
Der Flächeninhalt des Fussballfeldes wird also für eine Breite von und eine Höhe von maximal.
Berechne nun durch Einsetzen von und den Flächeninhalt :
Der Flächeninhalt wird also auf maximiert.
Globales Extremum und Randextremum
{{Box | Aufgabe 5: Randextrema beachten |
Gegeben ist der Graph einer Funktion mit im Intervall . Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt A auf dem Graphen von g liegt. Welches der möglichen Rechtecke hat den größten Flächeninhalt?
Hinweis: Mit Hilfe der x-Achse wollen wir die Breite des Rechteckes in cm und mit Hilfe der y-Achse die Länge des Rechteckes in cm angeben.
Hinweis: In der Abbildung kannst du Punkt C verschieben.
Mit in berechnen wir den Flächeninhalt mit der Funktion .
Die Nebenbedingung ist die angegebene Funktion .
Setzt man nun die Nebenbedingung in die Funktion ein, so erhalten wir . Die Funktion heißt nun , da sie nur noch von der Unbekannte abhängt.
Nun lässt sich mit Hilfe der notwendigen Bedingung und der hinreichenden Bedingung für Hochpunkte die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir in die Ausgangsfunktion ein und erhalten nun den lokalen Hochpunkt .
Zuletzt prüfen wir noch die Randpunkte.
und .
Damit liegt der globale Hochpunkt an der Stelle .
Optimierungsprobleme & Funktionenscharen