Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 92: | Zeile 92: | ||
{{Box | {{Box | ||
| Aufgabe 2: | | Aufgabe 2: Das optimale Paket | ||
| | | | ||
Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen (<math>a</math>) her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein: | Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen (<math>a</math>) her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein: | ||
* Die Länge (<math>b</math>) soll nicht größer als <math> 200cm </math> sein. | * Die Länge (<math>b</math>) soll nicht größer als <math> 200cm </math> sein. | ||
* Länge (<math>b</math>) plus Umfang | * Länge (<math>b</math>) plus Umfang einer quadratischen Seitenfläche soll <math> 360cm </math> groß sein. [[Datei:Kartonfabrik 3.png|300|rechts|rahmenlos]] | ||
'''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | '''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | ||
Zeile 102: | Zeile 102: | ||
{{Lösung versteckt | 1= | {{Lösung versteckt | 1= | ||
Rechne Höhe (<math>a</math>) <math>*</math> Breite (<math>a</math>) <math>*</math> Länge (<math>b</math>), um das Volumen eines Quaders zu ermitteln. | Rechne Höhe (<math>a</math>) <math>*</math> Breite (<math>a</math>) <math>*</math> Länge (<math>b</math>), um das Volumen eines Quaders (Paketes) zu ermitteln. | ||
| 2=Tipp zum Aufstellen der Zielfunktion | 3=Tipp verbergen}} | | 2=Tipp zum Aufstellen der Zielfunktion | 3=Tipp verbergen}} | ||
| Arbeitsmethode | Farbe={{Farbe|orange}} }} | | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
{{Lösung versteckt | 1= | |||
Nutze die zweite Bedingung, stelle eine Gleichung auf und stelle diese nach <math>b</math> um. | |||
Zweite Bedingung: Länge (<math>b</math>) plus Umfang '''einer''' quadratischen Seitenfläche soll <math> 360cm </math> groß sein. Den Umfang einer quadratischen Seitenfläche erhältst du, indem du <math>4*a</math> rechnest. | |||
| 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | |||
{{Box | {{Box | ||
|Aufgabe 3: Die optimale Pommestüte | |Aufgabe 3: Die optimale Pommestüte |
Version vom 18. Mai 2020, 08:54 Uhr
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen