Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 98: | Zeile 98: | ||
* Die Länge soll nicht größer als <math> 200cm </math> sein. | * Die Länge soll nicht größer als <math> 200cm </math> sein. | ||
* Länge plus Umfang der quadratischen Seitenflächen soll <math> 360cm </math> groß sein. | * Länge plus Umfang der quadratischen Seitenflächen soll <math> 360cm </math> groß sein. | ||
'''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | '''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen.[[Datei:Kartonfabrik.png|mini]] | ||
'''b)''' Gebe das maximale Volumen an. | '''b)''' Gebe das maximale Volumen an. | ||
{{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | {{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | ||
Zeile 205: | Zeile 206: | ||
Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | Setzt man nun die Nebenbedingung in die Funktion <math>A(x,y)</math> ein, so erhalten wir <math>A(x)=x^3-6x^2+11x</math>. Die Funktion heißt nun <math>A(x)</math>, da sie nur noch von der Unbekannte <math>x</math> abhängt. | ||
Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1,59 | Nun lässt sich mit Hilfe der notwendigen Bedingung <math>A'(x)=0</math> und der hinreichenden Bedingung für Hochpunkte <math>A''(x) < 0 </math> die Stelle des lokalen Hochpunktes bestimmen. Anschließend setzen wir <math>x</math> in die Ausgangsfunktion <math>A(x)</math> ein und erhalten nun den lokalen Hochpunkt <math>HP(1,59|7,14)</math>. | ||
Zuletzt prüfen wir noch die Randpunkte. | Zuletzt prüfen wir noch die Randpunkte. |