Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 143: Zeile 143:


{{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}}
{{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}}
{{Lösung versteckt | 1= Das Volumen eines Kegels errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi*r^2*h </math>. | 2=Tipp zur Bestimmung des Volumens | 3=Tipp verbergen}}
{{Lösung versteckt | 1= Das Volumen der Pommestüte errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi*r^2*h </math>. | 2=Tipp zur Bestimmung des Volumens | 3=Tipp verbergen}}
{{Lösung versteckt | 1= Überlege dir, wie du die Länge <math>s</math> ermitteln könntest. Denke dabei an den Satz des Pythagoras | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}}
{{Lösung versteckt | 1= Mit Hilfe vom Satz des Pythagoras kannst du <math>s^2</math> bestimmen. Durch geeignetes Umstellen nach <math>r^2</math> erhältst du schließlich eine geeignete Nebenbedingung. | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}}


{{Lösung versteckt
{{Lösung versteckt
|1=  
|1=  


Aus einer Tüte soll ein Kegel mit maximalem Volumen geformt werden. Zu optimieren ist also das Volumen <math> V(r,h)=\frac{1}{3} \cdot\pi\cdot r^2 h </math> eines Kegels.  
Leon möchte aus einem kreisförmigen Stück Papier eine Pommestüte formen, in der möglichst viele Pommes hineinpassen. Zu optimieren ist also das Volumen <math> V(r,h)=\frac{1}{3} \cdot\pi\cdot r^2 h </math> der Pommestüte.


Betrachte nun eine Tüte. Nimmt man eine Tüte und rollt diese gar nicht, also <math> s=r </math> und <math> h=0 </math>, so erhält man kein Volumen, also <math> V=0 </math>. Gleiches passiert, wenn man eine Tüte gan zusammenrollt, also <math> s=h=10 </math>. Es muss also ein Volumen <math> V </math> zwischen beiden geben.  
Rollt Leon das Stück Papier nicht, so ist ist das Volumen <math>V = 0</math>. Rollte Leon das Stück Papier ganz zusammen, so ist <math>s = h = 10</math>.


Gegeben sind zwei Größen: die Mantellinie <math> s=10 </math> des Kegels, der Radius <math> r </math> und die Höhe <math> h </math>. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>.  
Gegeben ist die Mantellinie mit <math> s=10 </math> der Pommestüte. Außerdem ist das Volumen der Pommestüte von den Variablen <math> r </math>(Radius) und <math> h </math>(Höhe) abhängig. Mit dem Satz des Pythagoras ergibt sich <math> r^2 + h^2 = 10^2 </math>. Stelle diese Gleichung nun nach <math> r </math> um und erhalte <math> r^2 = 100 - h^2 </math>.  


Setze diesen Ausdruck nun für <math> r^2 </math> in die Formel für das Volumen ein. Du erhälst folgende Zielfunktion:
Setze diesen Ausdruck nun für <math> r^2 </math> in die Formel für das Volumen ein. Du erhälst folgende Zielfunktion:
Zeile 163: Zeile 163:


Die Ableitungsfunktion lautet <math>V'(h)=- \pi*h^2 + \frac{100}{3} * \pi</math>.
Die Ableitungsfunktion lautet <math>V'(h)=- \pi*h^2 + \frac{100}{3} * \pi</math>.
Das maximale Kegelvolumen beträgt ca. <math>403cm^3</math>
Das maximale Volumen der Pommestüte beträgt ca. <math>403cm^3</math>


| 2= Lösung
| 2= Lösung
Zeile 169: Zeile 169:
}}
}}


| Arbeitsmethode
 
| Farbe={{Farbe|blue}}      }}
 
 
| Arbeitsmethode }}
 
 


==Globales Extremum und Randextremum==
==Globales Extremum und Randextremum==

Version vom 17. Mai 2020, 18:10 Uhr

Info

In diesem Kapitel kannst du etwas zum Thema Optimierungsprobleme lernen.

In Aufgaben, die orange gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.

Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.

Und Aufgaben mit grüner Hinterlegung sind Knobelaufgaben.

Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.

In diesem Kapitel erklären wir dir zunächst, was Optimierungsprobleme sind. Dabei werden wir wichtige Begriffe wiederholen.

Anschließend kannst du selbstständig Aufgaben bearbeiten.

Viel Erfolg!


Einführung: Optimierungsprobleme

Was sind Optimierungsprobleme?

Optimierungsprobleme , oder auch Extremwertprobleme, beschreiben eine Aufgabenform, bei der nach dem optimalen Wert einer Funktion gefragt wird. Dieser optimale Wert ist oftmals ein Extremwert, also ein Maximum oder ein Minimum.

Die Berechnung erfolgt dabei im Sachzusammenhang, es wird also beispielsweise nach dem minimalen Volumen einer Schachtel gefragt, die man mit einem Blatt Papier falten kann, oder nach dem maximalen Flächeninhalt eines Grundstücks, das man mit einer bestimmten Meterzahl an Zaunteilen einzäunen kann.

Die Funktion, deren Extremwert es zu bestimmen gilt, muss also noch ermittelt werden.

Vorgehen beim Lösen von Optimierungsproblemen

So löst du Optimierungsprobleme

Bei Optimierungsproblemen geht es stets darum, dass eine bestimmte Größe optimiert werden soll. So wird z. B. eine optimale Verpackung für Reis oder die optimale Anzahl an Zahnpasten gesucht, die in einen Karton passen - es geht also um eine Anwendungssituation. Das Ergebnis eines Optimierungsproblems ist daher auch meist kein exakter Wert sondern ein Näherungswert. Dieser muss natürlich sinnvoll gewählt sein.

Zur Lösung eines Optimierungsproblems muss man zunächst die Aufgabe genau lesen und verstehen. Hierbei kann man sich die folgenden Fragen stellen: Worum geht es? Welche Größen kommen vor und wie hängen sie zusammen? Welche Größe soll nun optimiert, also maximiert oder minimiert werden?

Der optimale Wert bedeutet mathematisch, den Extremwert einer Funktion zu bestimmen. Du musst also das Optimierungsproblem als Funktion ausdrücken und dabei die anderen Größen miteinbeziehen. Mit dieser Funktion kannst du dann den optimalen Wert bestimmen.


Aufgabe 1: Beispiel


Ein Sportplatz mit einer 400-m-Laufbahn soll so angelegt werden, dass das Fußballfeld möglichst groß ist. Die seitlichen Kurven des Sportplatzes sollen Halbkreise sein.

a) Für welche Länge und für weiche Breite wird das Fußballfeld im Inneren des Sportplatzes maximal?

b) Wie groß ist das Fußballfeld?



Aufgabe 2

Eine Kartonfabrik stellt quaderförmige Pakete mit quadratischen Seitenflächen her. Damit die Pakete nicht zu unhandlich werden, sollen noch zwei Bedingungen erfüllt sein:

  • Die Länge soll nicht größer als sein.
  • Länge plus Umfang der quadratischen Seitenflächen soll groß sein.

a) Ermittle die Abmessungen des Pakets mit dem größten Volumen.

b) Gebe das maximale Volumen an.


Aufgabe 3: Die optimale Pommestüte

Leon möchte aus einem kreisförmigen Stück Papier mit dem Radius eine Pommestüte formen.

Dazu schneidet er den Kreis längs eines Radius ein. Nun versucht Leon die Pommestüte so zu formen, sodass das Volumen der Pommestüte maximal ist, damit auch möglichst viele Pommes hineinpassen.

Was ist das maximale Volumen der Pommestüte?
Gerader Kreiskegel.svg




Globales Extremum und Randextremum

Merke

Der größte Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Maximum. Der kleinste Funktionswert unter allen Funktionswerten in der Definitionsmenge heißt globales Minimum.

Ein globales Extremum an einer Randstelle der Definitionsmenge heißt Randextremum.
Übung



Aufgabe 4

Gegeben ist der Graph einer Funktion mit im Intervall . Ein achsenparalleles Rechteck wird so gelegt, dass ein Eckpunkt der Koordinatenursprung ist und der gegenüberliegende Eckpunkt auf dem Graphen von f liegt.

Welches der möglichen Rechtecke hat den größten Flächeninhalt?
Aufgabe Ranextrema beachten.png

Optimierungsprobleme & Funktionenscharen

Berechnung von Extremwerten im Fall einer Funktionenschar

In bestimmten Fällen kann es vorkommen, dass die erhaltene Funktion nicht nur von einer Variable abhängt, sondern außerdem von einem Parameter .

In diesem Fall ändert sich die Vorgehensweise bei der Berechnung des Extremwertes zwar nicht, allerdings ist das erhaltene Ergebnis dann abhängig von a.


Aufgabe 5

Gegeben ist die Funktionenschar .

Für welchen Wert von liegt der Tiefpunkt der Funktionenschar am höchsten?