Digitale Werkzeuge in der Schule/Basiswissen Analysis/Steckbriefaufgaben: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 157: | Zeile 157: | ||
{{Box|1= Extrema und Wendestellen | {{Box|1= Extrema und Wendestellen | ||
|2= Mit einem '''Extremwert''' bezeichnet man ein lokales oder globales Maximum (Hochpunkt) oder Minimum (Tiefpunkt). Nimmt der Funktionswert <math>f(x)</math> an einer Stelle <math>x</math> den größten bzw. kleinsten Wert innerhalb eines Intervalles um <math>x</math> an, so spricht man von einem lokalen Maximum bzw. lokalem Minimum. Ist der Funktionswert bei <math>x</math> der größte bzw. kleinste Wert für den gesamten Definitionsbereich der Funktion, so nennt man ihn globales Maximum bzw. globales Minimum. | |2= {{Lösung versteckt | ||
|1= Mit einem '''Extremwert''' bezeichnet man ein lokales oder globales Maximum (Hochpunkt) oder Minimum (Tiefpunkt). Nimmt der Funktionswert <math>f(x)</math> an einer Stelle <math>x</math> den größten bzw. kleinsten Wert innerhalb eines Intervalles um <math>x</math> an, so spricht man von einem lokalen Maximum bzw. lokalem Minimum. Ist der Funktionswert bei <math>x</math> der größte bzw. kleinste Wert für den gesamten Definitionsbereich der Funktion, so nennt man ihn globales Maximum bzw. globales Minimum. | |||
Ist <math>f(x)</math> eine Extremstelle, so sagt man auch die Funktion <math>f</math> hat eine Extremstelle bei <math>x</math>. | Ist <math>f(x)</math> eine Extremstelle, so sagt man auch die Funktion <math>f</math> hat eine Extremstelle bei <math>x</math>. | ||
[[Datei:Extrema example de.svg|zentriert]] | [[Datei:Extrema example de.svg|zentriert]] | ||
|2= Extremstellen | |||
|3= Extremstellen verbergen}} | |||
|3= Beispiel}} | |3= Beispiel}} | ||
{{Box|1= Funktionsgraph zeichnen | {{Box|1= Funktionsgraph zeichnen |
Version vom 1. Mai 2020, 04:53 Uhr
Allgemeine Hinweise
Einführung
Auf dieser Seite lernst Du Steckbriefaufgaben kennen. In Steckbriefaufgaben geht es darum, aus den Eigenschaften einer Funktion deren Funktionsterm und deren Funktionsgraphen herzuleiten. Dazu ist das Lösen von Gleichungssystemen mit mehr als einer Variablen notwendig, was Du auf dieser Seite lernen wirst.
Wie empfehlen Dir, Dich bereits mit den Eigenschaften von Funktionen und der lokalen Änderungsrate beschäftigt zu haben, wenn Du mit dieser Seite beginnst.
Eigenschaften von Ganzrationalen Funktionen
In diesem Abschnitt werden wir kurz die Eigenschaften von Ganzrationalen Funktionen wiederholen. Solltest Du das Kapitel Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung noch nicht bearbeitet haben, empfehlen wir Dir, Dich zuerst damit vertraut zu machen. Wenn Du Dich fit fühlst beim Thema Funktionseigenschaften, kannst Du die Wiederholung überspringen und Dein Wissen im Quiz im unteren Bereich dieses Abschnitts testen.
Quiz
Einführung
Auf dieser Seite lernst Du, wie Du Gleichungssysteme mit mehr als einer Variablen lösen kannst. Falls Du dir noch unsicher bist, wie man eine Gleichung mit nur einer Variable löst, versuche folgendes Beispiel zu lösen. Falls Du das aber noch kannst, dann überspringe das Beispiel gerne.
Das Einsetzungsverfahren
Aufgaben zum Einsetzungsverfahren
Quadratische Funktionen im Sachzusammenhang
Das Gauß-Verfahren
Aufgaben zum Gauß-Verfahren
Kubische Funktionen im Sachzusammenhang