Digitale Werkzeuge in der Schule/Basiswissen Analysis/Optimierungsprobleme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 103: | Zeile 103: | ||
'''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | '''a)''' Ermittle die Abmessungen des Pakets mit dem größten Volumen. | ||
'''b)''' Gebe das maximale Volumen an. | '''b)''' Gebe das maximale Volumen an. | ||
|{{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | |||
{{Lösung versteckt | 1= | |||
| 2= | |||
|Farbe= {{Farbe|orange}} | |Farbe= {{Farbe|orange}} | ||
|Icon= {{Vorlage:Icon pencil}} | |Icon= {{Vorlage:Icon pencil}} | ||
Zeile 142: | Zeile 112: | ||
|Titel= <span style="color: {{Farbe|links}}">Aufgabe 3</span> | |Titel= <span style="color: {{Farbe|links}}">Aufgabe 3</span> | ||
|Inhalt= | |Inhalt= | ||
Aus einem kreisförmigen Stück Papier mit dem Radius <math>s=10cm</math> soll eine kegelförmige Tüte mit maximalem Volumen geformt werden. Dazu wird der Kreis längs eines Radius eingeschnitten und zu einer Tüte geformt. [[File:Gerader Kreiskegel.svg| 200px | rechts ]] {{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | Aus einem kreisförmigen Stück Papier mit dem Radius <math>s=10cm</math> soll eine kegelförmige Tüte mit maximalem Volumen geformt werden. Dazu wird der Kreis längs eines Radius eingeschnitten und zu einer Tüte geformt. | ||
Was ist das maximale Kegelvolumen? [[File:Gerader Kreiskegel.svg| 200px | rechts ]] {{Lösung versteckt | 1=Beachte, dass der Radius des Stücks Papier <math>s=10cm</math> der Mantellinie <math>s</math> des Kegels entspricht. | 2=Tipp zur Erfassung des Problems | 3=Tipp verbergen}} | |||
{{Lösung versteckt | 1= Das Volumen eines Kegels errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi*r^2*h </math>. | 2=Tipp zur Bestimmung des Volumens | 3=Tipp verbergen}} | {{Lösung versteckt | 1= Das Volumen eines Kegels errechnet man mit der Formel <math> V(r,h)=\frac{1}{3}\pi*r^2*h </math>. | 2=Tipp zur Bestimmung des Volumens | 3=Tipp verbergen}} | ||
{{Lösung versteckt | 1= Überlege dir, wie du die Länge s ermitteln könntest. Denke dabei an den Satz des Pythagoras | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | {{Lösung versteckt | 1= Überlege dir, wie du die Länge s ermitteln könntest. Denke dabei an den Satz des Pythagoras | 2=Tipp für eine geeignete Nebenbedingung | 3=Tipp verbergen}} | ||
Zeile 161: | Zeile 132: | ||
Da in Anwendungssituationen meist nur gute Näherungswerte sinnvoll sind, sind hier grafisch-tabellarische Bestimmungen der Extremwerte hinreichend. | Da in Anwendungssituationen meist nur gute Näherungswerte sinnvoll sind, sind hier grafisch-tabellarische Bestimmungen der Extremwerte hinreichend. | ||
*Die Ableitungsfunktion lautet <math>V'(h)=- \pi*h^2 + \frac{100}{3} * \pi</math>. | |||
Das maximale Kegelvolumen beträgt ca. <math>403cm^3</math> | |||
| 2= Lösung | | 2= Lösung |
Version vom 30. April 2020, 06:13 Uhr
Allgemeine Hinweise
Einführung: Optimierungsprobleme
Vorgehen beim Lösen von Optimierungsproblemen
Globales Extremum und Randextremum
Optimierungsprobleme & Funktionenscharen